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Abstract. Primary ecosystem services provided by freshwater wetlands in the California
Central Valley, USA, include water quality improvement, biodiversity support, and flood
storage capacity. We describe these services for freshwater marshes, vernal pools, and riparian
wetlands and the implications for wetlands restored under USDA programs in the Central
Valley. California’s Central Valley is a large sedimentary basin that was once covered by
grasslands, extensive riparian forests, and freshwater marshes that today have been converted
to one of the most intensive agricultural areas on earth. Remaining freshwater wetlands have
been heavily altered, and most are intensively managed. Nitrogen loading from agriculture to
surface and groundwater in the Central Valley was estimated to be 34.7 3 106 kg N/yr.
Atmospheric deposition of nitrogen in the Central Valley was estimated to be 44.33 106 kg N/
yr, of which ;1.5 3 106 kg N/yr was introduced directly to wetlands. Our analysis indicates
that wetlands enrolled in the USDA Wetland Reserve Program (WRP) may potentially
denitrify the NO3-N load from relatively unpolluted source water in ,18 days, but the
potential to denitrify the NO3-N load from highly polluted source water is uncertain.

Water management strongly influences use, diversity, and abundance of avian fauna as well
as other biota. Freshwater marshes in the region continue to support important populations of
breeding and wintering waterfowl and shorebirds whose populations fluctuate seasonally.
Avian diversity in the little remaining area of Central Valley’s riparian wetlands is also high
and influenced by stand maturity, heterogeneity, and diversity. USDA conservation practices
that promote these characteristics may support avian diversity. Effects of USDA conservation
practices on non-avian fauna are poorly understood and warrant further study.

Key words: birds; Central Valley, California; conservation programs; invertebrates; water quality;
wetlands.

INTRODUCTION

Wetlands are among the most threatened ecosystems

in the world (Millennium Ecosystem Assessment 2005).

Globally, the surface area of wetland ecosystems has

been estimated to be 8.63 106 ha, or ;6% of the earth’s

surface area (Mitsch and Gosslink 2000). Although

limited in area, wetlands are prominent landscape

features on most continents, are among the most

productive ecosystems on earth (Kvet and Westlake

1998), and provide a variety of services to human

societies. These services include biological diversity,

recreation, surface and flood water storage, nutrient

reduction, and carbon sequestration (Sahagian and

Melack 1998, Millennium Ecosystem Assessment 2005,

Batzer and Sharitz 2006, Bridgham et al. 2007). Despite

providing these services, the worldwide loss and

degradation of wetlands has been more rapid than for

other ecosystems (Millennium Ecosystem Assessment

2005).

Wetland loss and degradation is a global phenome-

non, but has been particularly acute in the United

States, where almost half of the wetland area of the

lower 48 states was lost by the mid-1980s (Tiner 1984).

While wetland loss and degradation continue, recent

assessments found the area of restored and created

wetlands exceeded losses, resulting in a net gain of

wetland area for the first time in over 50 years (Dahl

2005). Much of the recent gain in wetland area has

occurred in agricultural landscapes. In the Central

Valley of California (CVC), freshwater wetland area

has increased from ;153 3 103 ha in the mid-1980s

(Frayer et al. 1989) to 198 3 103 ha today. Agricultural

production of rice in the northern valley has also

ameliorated some wetland loss. The primary reasons for

wetland loss in the CVC, as in other parts of the world,

have been conversion for agriculture and infrastructure

development driven by human population growth

(Millennium Ecosystem Assessment 2005). Water with-

drawal, runoff of nutrients and pesticides, and intro-

duction of alien species also contribute to degradation of

CVC wetlands. By 2025, the population of California is

expected to increase from its current 373106 to 44–483

106 people or 19–30% (Public Policy Institute of

California 2006). Population growth, exacerbated by
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global climate change, will increase demand for water

and land for agriculture and development, continuing to

threaten wetlands in the CVC.

Several U.S. Department of Agriculture (USDA)

programs encourage landowners to conserve or restore

wetlands and surrounding uplands. Of these, the

Wetland Reserve Program (WRP) is directly focused

on wetland conservation. This program provides finan-

cial incentives to landowners who agree to restore,

protect, or enhance wetlands. The goal of this program

is to increase ecosystem services provided by restored

wetlands. However, no formal scientific evaluation of

the effects of WRP conservation practices in the CVC in

providing ecosystem services has been undertaken.

Our objective is to illustrate some key ecosystem

services potentially provided by WRP wetlands in the

CVC. We reviewed literature and synthesized informa-

tion relevant to wetland ecosystem services in the CVC.

This review focuses primarily on freshwater marshes,

since these habitats comprise most of the habitats

enrolled in the WRP in the CVC. Information on

wetland ecosystem services provided by freshwater

marshes in the CVC is imbalanced, with considerable

literature available for waterbirds and lesser information

available on invertebrates and nutrient reduction. WRP

wetlands have not previously attracted the attention of

research because these wetlands are on private lands

where access is limited and because the program is

relatively young. More than half of WRP easements in

the CVC were enrolled after the year 2000. With these

limitations, we synthesized trends in implementation of

WRP wetlands, and, through inference, discuss potential

increases in wetland ecosystem services resulting from

the WRP.

CALIFORNIA’S CENTRAL VALLEY

The CVC is an elongated sedimentary basin ;640 km

long, 88 km wide, and covering an area of 5.4 3 106 ha

(Fig. 1; Fayer et al. 1989). It is often subdivided into the

Sacramento River Valley in the north and San Joaquin

and Tulare Valleys in the south. Topography is

relatively flat throughout the valley, with elevation

ranging from 120 m in the north and south to below

sea level near San Francisco Bay (Schoenherr 1992).

Boundaries of the valley are not precisely defined since

valley grasslands grade into oak–grassland savannas of

the foothills everywhere except the south where deserts

border the CVC. The climate of the valley is

Mediterranean with warm, dry summers and mild, wet

winters. Air temperature varies little throughout the

valley, with average July highs being 37.18C in both

Bakersfield and Red Bluff, while average December lows

in Bakersfield (2.98C) are only slightly warmer than in

Red Bluff (2.38C). Annual precipitation, however,

exhibits a distinct gradient and ranges from 16 cm in

Bakersfield and 46 cm in Sacramento to 92 cm in Red

Bluff. Throughout the valley, .90% of annual precip-

itation falls as rain during November–May. However,

runoff of the Sierra Nevada snowpack historically

contributed a proportionately greater volume of water

to the southern CVC than to the northern portion.

Unlike rainfall, snowmelt runoff volume was also

greatest in early summer (Fig. 2). Native habitats in

the CVC were predominantly grasslands dominated by

bunchgrasses, with extensive riparian forests and fresh-

water marshes.

Wetlands in the CVC are primarily freshwater

marshes with either seasonal or semipermanent hydro-

logic regimes, riparian wetlands, or vernal pools. Most

can be classified using Cowardin et al. (1979) as

palustrine wetlands of different water regimes (e.g.,

seasonal, semipermanent). Freshwater wetlands once

covered ;1.6 3 106 ha or 30% of the CVC. The largest

freshwater wetland area in California was associated

with Tulare, Buena Vista, and Kern Lakes (Frayer et al.

1989). These lakes contained as much as 1783 103 ha of

wetland and deepwater habitats, although the amount

varied seasonally and annually due to climatic condi-

tions. Historically, freshwater marshes in the Sacra-

mento Basin were fed by flooding during winter

precipitation, while marshes in the San Joaquin Basin

were fed by flooding during snowmelt runoff, resulting

in distinct differences in the timing of flooding (Fig. 2).

Freshwater marshes in other parts of the CVC were

flooded by rivers that seasonally inundated large areas.

Vernal pools refer to temporary wetlands with shallow

surface depressions in areas of poorly drained soils that

retain surface water during winter precipitation, surface

flows, or subsurface flows (Smith and Verrill 1998). The

area of these wetlands in the CVC in recent years varies

from ;107 to 2863 103 ha (Frayer et al. 1989, Newbold

2002).

Human influence on CVC habitats dates back

thousands of years. Although impacts on natural

resources by Native American Indians are not well

documented, .500 tribes are recorded in California, and

each tribal group harvested natural resources and many

manipulated habitats to maintain wildlife or native plant

populations (Paddison 1999). The first agricultural

impacts in the CVC were the introduction of

Mediterranean weeds and large herds of domesticated

livestock by Spanish settlers who colonized the state in

1769 (Paddison 1999). Early agricultural development

was often located in riparian wetlands where irrigation

was not required. This development accelerated through

the mid-1800s and, when coupled with sedimentation

from gold mine tailings, forever altered riparian

wetlands of the CVC (Isenberg 2005). Conversion of

wetlands to agricultural production became widespread

in the 1850s and continued through the 1920s (Frayer et

al. 1989). By 1920, 70% of the wetland area in the CVC

had been modified by levees, drainage, and local water

diversion projects. More recent analyses estimated 95%
of wetlands in the CVC had been lost, as well as 98% in

riparian habitat, and 64% of grasslands (Central Valley

Joint Venture 2006).
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Today, the vast majority of land in the CVC (94%) is

privately owned, including important wildlife habitats

such as wetlands, riparian forest, and grasslands (Hickey

et al. 2008). Agricultural development in the CVC is

intensive, with ;3.0 3 106 ha (56%) of the valley

classified as irrigated or nonirrigated farmland (Table 1;

Newbold 2002). Cotton, almonds, corn, rice, silage,

grapes, and tomatoes occupy .1.3 3 106 ha of the total

agricultural land. Agriculture development in the CVC

has only been possible because a massive water

distribution system that transfers water from the north

to arid central and southern parts of the state. Water

withdrawals in California were recently estimated to be

53.5 3 109 m3/yr (Hutson et al. 2001), roughly equal to

the water storage capacity in the entire state (Great

Valley Center 2005). In the CVC, water withdrawals

over recent wet and dry years have averaged 35.7 3 109

m3/yr or 67% of the state total (Great Valley Center

FIG. 1. Map of California, USA, with the Central Valley offset.

FIG. 2. Mean monthly flow in the San Joaquin River at
Mendota, California, during 1940–2005 and in the Sacramento
River at Red Bluff during 1892–1943. Sacramento River data
presented are 10% of actual values for scale and to emphasize
seasonal timing of flow.
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2005). Most of the water used in the CVC (92.9%) is

used in agricultural production.

Throughout the United States, USDA-funded con-

servation programs have successfully secured millions of

acres of important wildlife habitat and continue to

provide technical and financial support for their

management. In the Lower Mississippi Alluvial Valley

and the Prairie Pothole Region, these programs are

responsible for the protection of breeding, migration,

and wintering habitat for waterfowl and other nongame

grassland birds (Reynolds et al. 2001, King et al. 2006).

In the CVC, most of the agricultural land areas enrolled

in USDA conservation programs are either enrolled in

the Environmental Quality Incentives Program (EQIP)

or receive technical assistance through the Conservation

Technical Assistance Program (Table 2). The proportion

of agricultural land enrolled in WRP is small; however,

many Farm Bill conservation programs implement

conservation practices that maintain, enhance, or restore

wetlands. Thus, benefits to wetland conservation from

different USDA conservation practices are difficult to

infer from program titles. The two most common

conservation practices employed within the WRP in

the CVC between 2000 and 2006 were Wetland

Restoration and Wetland Wildlife Habitat Manage-

ment (Table 3). Many USDA conservation programs

have existed for a decade or longer and enrolled large

areas of the landscape in the CVC.

Widespread wetland conversions to agriculture, urban

expansion, and disruption of natural hydrological

processes in the CVC have resulted in unprecedented

losses in species diversity and abundance (Fredrickson

and Laubhan 1995). Since its inception, WRP restora-

tion activities have focused primarily on the creation of

heterogeneous micro- and macro-topography features

such as islands, ponds, and swales in previously flat,

laser-leveled fields. Although the resulting seasonal and

semipermanent wetlands are thought to benefit wildlife,

effects have yet to be comprehensively evaluated.

Conservation plans applied on easement lands are

comprised of USDA conservation practices, and all

projects must comply with conservation practice criteria

in order to receive financial assistance. Specific activities

and habitat design follow the recommendations of

USDA technical guides and are dependent on soils,

geomorphology, and water availability. Current resto-

ration goals revolve around enhancing habitat for

nesting and migrating waterfowl and shorebirds, as well

as invertebrates and plants associated with vernal pools.

Riparian buffer enhancement and tree-planting practices

have also been initiated to provide habitat for riparian

songbirds. Management goals rarely implicitly include

non-avian species; however, as sites mature they may

provide benefits for a more diverse assemblage of fish,

amphibians, reptiles, and mammals.

Today, .90% of wetlands in the CVC are managed,

and two-thirds of managed wetlands are in private

ownership (Central Valley Joint Venture 2006). In

addition to natural wetlands, the area devoted to

cultivating rice in the CVC has expanded in recent years

and now exceeds 200 3 103 ha (California Department

of Food and Agriculture 2006). Flooded rice fields can

provide some natural wetland ecosystem services

(Elphick and Oring 2003) and influence the distribution

of waterfowl (Fleskes et al. 2005).

Future threats to wetlands in the CVC are over-

whelmingly related to water and human population

growth. Climate change will impact the quantity and

timing of water available for domestic, agricultural, and

natural resource uses. Wetland management in the CVC

relies on the ability of managers to manipulate water,

TABLE 1. Current area and percentage of predominant land
cover categories in the Central Valley of California (CVC),
USA.

Land cover category Area (ha) Area (%)

Wetlands and deepwater habitats 305 451 5.7

Palustrine 83 185 1.5
Riparian 43 630 0.8
Vernal pool 107 000 2.0
Estuarine intertidal 23 935 0.4
Deepwater habitats 47 701 0.9

Grasslands 1 294 304 24.0
Forests 345 102 6.4
Chapparal/scrub 179 053 3.3
Urban lands 338 500 6.3
Agriculture lands 3 028 192 56.2

Total 5 383 602 100.0

Note: Sources of data to compile this table include Newbold
(2002), California State University–Chico (2003), and Central
Valley Joint Venture (2006).

TABLE 2. Total area enrolled in seven USDA conservation programs within the Central Valley of
California (CVC) and the percentage of the total Central Valley the area represents.

USDA conservation program Area (ha)
Area

(% of CVC)

Conservation Reserve Enhancement (CREP) 752 ,0.1
Conservation Reserve (CRP) 22 736 0.4
Conservation Technical Assistance (CTA) 283 222 5.3
Conservation Technical Assistance: Grazing (CTA) 12 577 0.2
Environmental Quality Improvement (EQIP) 113 970 2.1
Wetland Reserve Program (WRP) 16 041 0.3
Wildlife Habitat Improvement (WHIP) 2051 ,0.1
Total land enrolled in USDA programs 451 348 8.4
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and water management is carried out on .83 000 ha of

private and public seasonal and semipermanent wet-

lands (Central Valley Joint Venture 2006). Under the

CVC Project Improvement Act (CVPIA), 521 3 106 m3

of water are now supplied for wetlands annually.

However, total water needed to meet the needs of birds

in existing wetlands in the CVC has been estimated to be

1.4 3 109 m3, or about three times the amount now

supplied (Central Valley Joint Venture 2006). Annual

water shortages in California, during years of normal

precipitation, are currently ;2.0 3 109 m3 and are

expected to increase to 3.0 3 109 m3 by 2020 (Hutson et

al. 2001). Population growth will likely further exacer-

bate this water deficit, as well as contribute to land use

conversion. The population of the CVC is projected to

increase 120% from the current 6.33 106 in 2006 to 13.9

3 106 by 2050 (California Department of Finance 2007).

This trend in human population growth is forecasted to

occur in both urban centers and in agricultural lands,

where as many as two-thirds of managed wetlands exist

(American Farmland Trust 2006). Continued popula-

tion growth will further challenge water availability,

water quality, and alter land use patterns.

ECOSYSTEM SERVICES

Wetlands provide a variety of ecosystem services that

benefit human societies (Millennium Ecosystem

Assessment 2005). Primary ecosystem services provided

by wetlands in the CVC are groundwater recharge, flood

storage, improving water quality, and support for

biodiversity. Although CVC wetlands contribute to

groundwater recharge, little information exists for this

benefit in the CVC. Our review and assessment of

wetland ecosystem services addresses flood storage,

nitrogen removal as one element of water quality

improvement, and biodiversity support as evidenced

TABLE 3. The 15 most common conservation practices employed on Wetland Reserve Program (WRP) easements in California’s
Central Valley during 2000–2006, percentage of the WRP area on which they have been applied, and definition of the practice.

Conservation practice and code
Area

applied (%) Definition

Wetland Wildlife Habitat Management (644) 27.1 Retaining, developing, or managing wetland habitat for
wetland wildlife.

Wetland Restoration (657) 26.3 The rehabilitation of a degraded wetland or the
reestablishment of a wetland so that soils, hydrology,
vegetative community, and habitat are a close
approximation of the original natural condition that
existed prior to modification to the extent practicable.

Wetland Enhancement (659) 12.1 The rehabilitation or reestablishment of a degraded wetland,
and/or the modification of an existing wetland.

Upland Wildlife Habitat Management (645) 7.0 Provide and manage upland habitats and connectivity
within the landscape for wildlife.

Prescribed Burning (338) 6.9 Controlled fire applied to a predetermined area.
Pest Management (595) 5.6 Utilizing environmentally sensitive prevention, avoidance,

monitoring, and suppression strategies to manage weeds,
insects, diseases, animals, and other organisms (including
invasive and noninvasive species) that directly or
indirectly cause damage or annoyance.

Land Smoothing (466)� 3.2 Removing irregularities on the land surface, reshaping the
surface of land to planned grades, or reshaping the
surface of the land to support recreational land use.

Conservation Cover (327) 2.9 Establishing and maintaining permanent vegetative cover to
protect soil and water resources.

Tree/Shrub Establishment (612) 2.6 Establishing woody plants by planting seedlings or cuttings,
direct seeding, or natural regeneration.

Prescribed Grazing (528) 2.5 Managing the controlled harvest of vegetation with grazing
animals.

Use Exclusion (472) 2.2 The temporary or permanent exclusion of animals, people,
or vehicles from an area.

Critical Area Planting (342) 0.5 Establishing permanent vegetation on sites that have or are
expected to have high erosion rates, and on sites that
have physical, chemical, or biological conditions that
prevent the establishment of vegetation with normal
practices.

Atmospheric Resource Quality Management (370) 0.3 A combination of treatments to manage resources that
maintain or improve atmospheric quality.

Wetland Creation (658) 0.3 The creation of a wetland on a site that was historically
non-wetland.

Riparian Forest Buffer (391) 0.3 An area predominantly trees and/or shrubs located adjacent
to and up-gradient from watercourses or water bodies.

Note: The total area enrolled in the WRP was 16 041 ha.
� The conservation practices 462 (Precision Land Forming) and 566 (Recreation Land Grading and Shaping) are included in

practice 466 (Land Smoothing).
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from bird and invertebrate communities. The geograph-

ic scope or our review is limited to the CVC. A

comparative assessment of ecosystem services provided

by wetlands in seven regions of the United States is

provided by Brinson and Eckles (2011).

Flood storage

Flood storage of wetlands in the CVC has not been

widely documented. However, surface area of wetlands

has been estimated at several periods. We used surface

area of palustrine and riparian wetlands reported in

1998 to estimate potential flood storage, assuming a

peak flood depth of 0.5 m. We estimated flood storage

capacity of WRP wetlands from 1998 and 2008 data

provided by the USDA (J. Groves, USDA, Davis,

California, USA, unpublished data). Total area in the

WRP in the CV in 1998 was 14 344 ha, and by 2008 it

had increased to 39 351 ha. Most, although not all, of

this area is in seasonal wetlands. Levees surrounding

these wetlands are typically 1.0–1.5 m tall; we assumed a

peak flood depth for WRP wetlands of 1.0 m. For vernal

pool wetlands, we estimated flood storage capacity by

calculating the average depth of 24 vernal pools in the

Sacramento River basin from published data (Wilcox

and Huertos 2005) and multiplied the average depth (20

cm) by the total area of vernal pools wetlands reported

for the CVC (Holland 1998).

Flood storage capacity of WRP wetlands has in-

creased in the past decade (Table 4). Flood storage

capacity of WRP wetlands in 2008 was comparable to

the service provided by other types of wetlands a decade

earlier (Table 4). Although our analysis of flood storage

potential provided by CVC wetlands is simplistic, we

believe it represents a first-order estimate of this

ecosystem service. The potential for flood storage by

wetlands in the CVC is substantial and perhaps

illustrated the fact that, in the 1870s, Tulare Lake was

the largest lake west of the Rocky Mountains.

Nitrogen removal

In surface waters, excess nitrogen and phosphorus has

long been recognized as contributing to eutrophication,

leading to increased growth of algae and rooted aquatic

plants, lower and more variable oxygen concentration in

water, altered biological community structure, reduced

biological diversity, and habitat loss (Carpenter et al.

1998). The impact of excess nitrogen on terrestrial

ecosystems is less well documented than on aquatic

ecosystems. However, many negative responses to excess

nitrogen in terrestrial ecosystems have been reported,

including elevated emission of N gases from soils,

increased atmospheric haze, alteration of alpine plant

communities, alteration of lichen communities, en-

hanced growth of exotic species, altered C cycling in

forests, and expansion of forests into grassland ecosys-

tems (Fenn et al. 2003a).

The ability of wetlands established and managed

through a variety of conservation practices on WRP

lands to reduce excess nitrogen and other pollutants in

surface waters could be a substantial benefit. Demand

for water in California is already high, with agricultural

demands in the CVC about double the amount received

as precipitation (Newbold 2005). Anticipated popula-

tion growth combined with climate change (Hayhoe et

al. 2004) will place even greater demands on water

resources and foreshadow conflicts between agricultural

water users and urban centers for clean water.

Preventing degradation of water is among the most

effective means of increasing water supplies.

Furthermore, wetland restoration is one of the most

cost-effective means of reducing water quality degrada-

tion from excessive nitrogen loading (Gren 1995).

Nitrogen is introduced to surface waters in the CVC

primarily from nonpoint source runoff from agriculture

and atmospheric deposition. In the United States, .80%
of nitrogen discharged to surface waters is from

nonpoint sources, with agricultural activities represent-

ing ;65% of all nonpoint nitrogen discharged

(Carpenter et al. 1998). In the CVC, nonpoint source

discharge of nitrogen from agriculture likely represents a

greater proportion than the national pattern. Annual

agricultural application of nitrogen to the CVC was

recently estimated to be 352 3 106 kg N/yr (Newbold

2005). Of this total, an estimated 4.7 3 106 kg N/yr

(1.3%) was delivered to surface waters in runoff, while

30.0 3 106 kg N/yr (8.5%) leached to groundwater and

could later move to surface waters. Newbold (2005)

modeled nitrogen attenuation in CVC wetlands as a

function of load, water retention time, water depth, and

a removal rate constant. Newbold (2005) assumed the

mechanisms for nitrogen removal were mainly conver-

sion by microorganisms into gaseous forms or plant

uptake and estimated that wetlands in the CVC could

attenuate 0.4 3 106 kg N/yr or 9.1% of the nitrogen

runoff to surface waters.

Atmospheric deposition is an important nonpoint

source of nitrogen loading to surface waters and

terrestrial ecosystems. Sources of atmospheric-N depo-

sition in the western United States are primarily from

transportation, power generation, and industry as NOx-

N and agriculture as NHx-N (Fenn et al. 2003b). In this

region, emissions of nitrogen oxide, nitrogen dioxide,

nitric acid and nitrate (NOx-N) are roughly double

emissions of ammonia and ammonium (NHx-N) (Fenn

TABLE 4. Potential flood storage capacity of palustrine,
riparian, vernal pool, and Wetland Reserve Program
(WRP) wetlands in the Central Valley of California.

Wetland
type

Storage capacity (106 m3)

1998 2008

Palustrine 4159 . . .
Riparian 2182 . . .
Vernal pool 2140 . . .
WRP 1434 3935

Note: Ellipses indicate that data were not available.
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et al. 2003b). In the atmosphere, NOx-N can be

transformed to nitric acid (HNO3), nitrate (NO3), and
organic compounds, while NHx-N is transformed to

ammonium (NH4). Atmospheric deposition of NOx-N
in California is widespread, but rates are greatest
downwind of urban centers. Deposition of NHx-N tends

to be more localized, with greatest rates occurring
around areas of livestock production. In the CVC, rates

of nitrogen deposition from both NOx-N and as NHx-N
are roughly 6 kg N�ha�1�yr�1, with localized areas in the
San Joaquin Valley receiving up to 9 kg N�ha�1�yr�1
(Fenn et al. 2003b). Using the atmospheric deposition
rate reported by Weiss (1999) and Fenn et al. (2003b),

we estimated atmospheric loading of nitrogen to the
CVC to be 44.33106 kg N/yr in wet and dry deposition.
The delivery of atmospheric nitrogen to surface waters

varies with precipitation and the form delivered varies
with human activity in the region. After deposition,

atmospheric NOx-N and NHx-N are presumably avail-
able, through ammonification and nitrification, to be

transformed to ammonium (NH4) and nitrate (NO3).
Much deposited nitrogen is stored in grassland soils
during dry summer months when vegetative growth

stops. Grassland soils can also retain nitrogen during
winters with little precipitation before being mobilized

during periods of normal precipitation (Ahearn et al.
2005). Our analyses indicate that atmospheric-N loading
in the CVC is equal to 12.6% of the N applied by

agriculture, accentuating the potential importance of
restored wetlands in nutrient removal.

We calculated potential nitrogen loss from a wetland
established on lands enrolled in WRP to illustrate the

potential water quality ecosystem service provided by
wetland restoration and associated conservation prac-
tices. The selected site is located in the Tulare Basin,

near the southern end of the CVC, and was restored by
the USDA in 2000. The size of this wetland (246 ha) is

representative of wetlands restored under WRP in the

CVC that average 143 ha, but vary in size. We assumed

the wetland would be flooded during November through

February since managed wetlands in this area are

typically flooded to provide waterfowl habitat during

late fall through late winter. Assuming a flooding depth

of 30 cm, we calculated volume as v ¼ a 3 d, where v is

volume (m3), a is area (m2), and d is depth (m) (Table 5).

We then calculated the volume of water needed to

maintain water depth during this period by subtracting

average precipitation (11.5 cm) from evapotranspiration

(29.6 cm) (Table 5) reported during November through

February 2000–2004 at Kettleman City, within 30 km of

the WRP (California Department of Water Resources

2007a). Potential denitrification of NO3-N from the

drain water available to fill and maintain the WRP

wetland was calculated using data from Sheibley et al.

(2006), who reported denitrification rates were strongly

correlated with initial NO3-N concentrations in a

restored riparian wetland along the Consumnes River.

In this study, the authors collected wetland soil samples

from 12 locations and estimated denitrification of

Consumnes River water in the laboratory using the

acetylene (C2H2) inhibition technique. We derived

potential denitrification rates for this WRP wetland by

regressing NO3-N loss rates against beginning NO3-N

concentration reported by Sheibley et al. (2006) to

estimate potential denitrification rates from drain water

that could flow into the wetland (Fig. 3). Denitrification

in wetlands is influenced by initial NO3-N concentra-

tion, as well carbon sources and water temperature

(Sirivedhin and Gray 2006, Burchell et al. 2007). We

reviewed water quality data from four agricultural

drains in the vicinity of this WRP wetland (California

Department of Water Resources 2007b). Ranges in

monthly values of NO3-N (0.6–195.0 mg/L), total

dissolved solids (1240–11 600 mg/L), and water temper-

ature (168–208C) suggest substrate and water tempera-

ture were favorable for denitrification. In this example,

we selected one drain in which the concentration of

TABLE 5. Potential NO3-N loss from a WRP wetland in Kern
County, California.

Measure Amount

NO3 concentration in water 4.67 mg/L

Surface area 246 ha

Flooding depth 30 cm

Wetland volume

Initial filling 738 000 m3

Precipitation 282 900 m3

Evapotransipiration loss 728 160 m3

Total volume 1 183 260 m3

NO3 loading

Load from initial filling 3446 kg
Load from evapotransipiration replacement 2079 kg
Load from areal deposition 723 kg
Total NO3 load 6248 kg

Daily NO3 loss rate 349 kg/d

Time to denitrify total NO3 load 17.9 d

FIG. 3. Relationship between NO3 concentration and the
rate of denitrification derived from data presented in Shiebly et
al. (2006). Dashed lines are 95% confidence intervals.
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NO3-N fit within the limits of our regression model (,5

mg/L).

Our analysis suggests that restored wetlands on WRP

lands could remove substantial amounts of NO3-N from

inflowing floodwater. Loss of the total NO3-N load to

this WRP wetland was theoretically completed within 18

days (Table 5). We did not estimate the fate of lost

nitrogen, including nitrification and ammonification.

However, nitrous oxide (N2O), a greenhouse gas, is

formed during an intermediate step in denitrification.

Nitrogen loss from these wetlands could contribute to

greenhouse gas emissions, but we have no information

on the extent of any emissions. Furthermore, only NO3-

N concentrations were reported for these drains and

total nitrogen concentration was undoubtedly higher,

but we cannot say how much. Still, NO3-N from

agricultural drains in this area is substantial and

contributes as much as 50% of the NO3-N load to the

San Joaquin River (Dubrovsky et al. 1998). When

wetland source water has very high concentrations of

nitrogen, it may be necessary to establish treatment

wetlands upstream of wetlands restored to achieve other

ecosystem services.

Bird use of restored wetlands may transfer nitrogen

from terrestrial to aquatic habitats. Nitrogen loading

from birds using a southern California treatment

wetland was estimated to be 25 kg N�ha�1�yr�1
(Andersen et al. 2003), and loading rates of similar

magnitude have been reported from other areas

(Hayes and Caslick 1984, Manny et al. 1994).

Nitrogen loading from birds, if of similar magnitude,

could double the loading in our example restored

wetland that was receiving source water with 5 mg

NO3/L, but would represent only ;4% of the total

load if nitrate concentration in the source water was

122 mg NO3/L.

Few investigations of potential nitrogen loss from

California wetlands have been published. Sheibley et al.

(2006) studied the benefits of riparian–river connectiv-

ity by estimating nitrogen loss from a restored 36-ha

riparian wetland along the Consumnes River. They

found that the percentage of organic matter was the

best predictor of soil denitrification potential and that

denitrification potential was also strongly correlated

with the percentage of total nitrogen and the percent-

age of total carbon in soils. Sheibley et al. (2006)

estimated that, in 2001, a dry year, nitrate loss from the

riparian could account for 118 kg/yr or 23.7% of the

river’s N load. In 2000, a wet year, they estimated that

the nitrate loss from the restored riparian area could

account for 850–6150 kg N/yr or 0.6–4.4% of the

river’s annual nitrogen load. Newbold (2002) used

landscape modeling to assess the potential nutrient loss

from wetlands throughout the CVC. He used data

from water quality monitoring stations on rivers on the

up- and downstream sides of watersheds to develop

estimates of nutrient loading, then estimated nutrient

loss or gain from wetland, agricultural, upland, and

urban areas. Newbold (2002) estimated that wetlands

in the CVC could attenuate 9.1% of the nitrogen in

runoff, but data available to calculate nitrogen loading

were limited.

Biological diversity

Bird surveys in the CVC indicate spatial and seasonal

variations in diversity and abundance, depending on a

species’ life history requirements and resource availabil-

ity. Although most restoration projects are assumed to

have benefitted wildlife, species-specific management

practices may further exacerbate losses by depriving

breeding birds and other fauna of wetland habitat when

they need them the most (Engilis 1995, Shuford et al.

1998). Furthermore, effects of WRP conservation

practices and seasonal water management on non-avian

wetland-dependent species are poorly understood.

Historically, overbank flooding of rivers and streams

in winter and spring inundated large areas of the CVC

and filled large shallow wetlands in the Tulare Basin. A

slow drawdown would have ensued over the summer

months, followed by dry conditions in the fall. Today,

summers in the CVC are characterized by a lack of

seasonal wetlands, with artificial flooding in the fall and

winter. Prior to conversion, the Tulare subbasin would

have provided much of the late-summer/early-fall

habitat as other areas of the CVC dried out. Diversion

of water for agricultural and municipal purposes has

largely drained the lakebeds that covered the southern

portion of the Valley, leaving behind the driest region of

the CVC (Central Valley Joint Venture 2006).

Despite heavy losses, CVC wetlands continue to

support more shorebirds during winter and spring than

any other inland site in North America and are reported

to be the most important habitats for wintering

populations of Sandhill Cranes (Pogson and Lindstedt

1991, Hickey et al. 2005, Central Valley Joint Venture

2006). Recent studies indicate that the Tulare subbasin

is a high-priority region for breeding shorebirds and

waterfowl, particularly over summer and early fall

(Hickey et al. 2008). Chronic water shortages coupled

with dry climate have reduced available habitat in the

southern CVC, resulting in relatively higher densities of

waterfowl and shorebirds. Overcrowding and poor

water quality put them at risk for disease. In winter,

shorebirds move from the Tulare Basin to the San

Joaquin Valley, where their use of wetlands is supple-

mented by flooded rice fields (Manolis and Tangren

1975, Shuford et al. 1998). More than half (52%) of the

WRP easement areas in the CVC lie in the northern

portion of the valley in the Sacramento subbasin. If

WRP is to provide support for shorebirds and breeding

waterfowl, there needs to be a greater focus on wetland

conservation and provision of clean water to the

southern CVC.

Approximately 10% of WRP land is enrolled in the

San Joaquin subbasin in the central CVC, where the

Grasslands, an area of extensive marshes dominated by
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annual grasses and forbs, divided by the San Joaquin

River are located. The Grasslands support at least 15

species of waterbirds other than shorebirds and water-

fowl (see Plate1), as well as raptors and songbirds (U.S.

FWS 2002). Historically, these Grasslands were flooded

by winter rains and snowmelt from rivers draining the

Sierra Nevada and supported a diverse number of

perennial-bunchgrass ecosystems including prairies,

oak–grass savannahs, and desert grasslands. Currently

only 36% of the historic 3.23106 ha of grassland remain

in California, most of which falls in the CVC (de Szalay

et al. 2003). Although by some estimates the Grasslands

receive relatively better protection, high shorebird use,

particularly over winter, warrant further assessment of

current management practices and their effects on

diversity and abundance.

The financial benefits of enrolling in the WRP are an

important incentive to many landowners. In late fall

and winter, conservation practices aimed at attracting

wintering waterfowl for sport (e.g., moist-soil manage-

ment) are common throughout the CVC. Moist-soil

management involves techniques designed to encour-

age germination of seed-producing grasses for winter-

ing waterfowl through intensive hydrological

manipulation and weed control. To achieve this,

wetlands typically undergo a spring drawdown, fol-

lowed by irrigation over the summer months to

promote the germination of waterfowl food plants.

Wetlands are then flooded throughout the fall and

winter months. Spring drawdowns may create inhos-

pitable conditions for migratory birds, whose diversity

peaks mid-April, and repeated flooding and draining of

wetlands reduces aquatic invertebrate species compo-

sition and diversity (Ebert and Balko 1987, Engilis

1995). Managing for shallower depths and slow

drawdowns during this period would greatly enhance

shorebird diversity and abundance in the San Joaquin

area over winter (Taft et al. 2002).

Maintenance of permanent water through the summer

and early fall is rare due to unreliable and expensive

water supplies; however, financial support is available

through initiatives such as the California Department of

Fish and Game Landowner Incentive Program.

Deepwater habitats are not only important to breeding

species, they also provide refuges for invertebrates that

would otherwise not survive (Euliss and Grodhaus

1987). Aquatic invertebrates become increasingly im-

portant in duck diets in late winter, and numerous

studies have noted their importance during brood

rearing. Aquatic invertebrate densities in semipermanent

wetlands were reported to peak in the summer; hence,

maintenance of some deepwater habitats may increase

invertebrate diversity (de Szalay et al. 1999). Wetland

designs that mimic wetland complexes with varying

hydrologic regimes may not only benefit species that

require some water present over the summer, but reduce

management costs (King et al. 2006).

Reverse-cycle wetlands, i.e., those flooded during the

spring and summer rather than fall and winter, may be

an important strategy to benefit breeding birds and

PLATE 1. Trumpeter swan, a rare visitor to California (USA). Photo credit: Jill K. Duffy.
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other species adapted to historic wetland hydrology.

Studies suggest higher invertebrate abundance in re-

verse-cycle wetlands than in permanent ponds (de Szalay

et al. 2003). Peak invertebrate populations occurred in

May in reverse-cycle and permanent wetlands, while in

semipermanent borrow areas, densities peaked in

March–April. Earlier peaks may benefit prebreeding

and breeding waterfowl, while later peaks may benefit

brood rearing by waterfowl.

Although much of the focus of WRP has been the

creation of seasonal and semipermanent wetlands, the

unique hydrology, size, and depth of vernal pools

provide habitat to a diverse assortment of endemic

plants, invertebrates and amphibians (Powell and

Hogue 1980, Silveira 1998, de Szalay et al. 1999). It is

estimated that that between 50% and 85% of vernal pool

wetlands have been lost since the 1800s. Vernal pools

also provide food resources to terrestrial invertebrates,

including pollinators, through the germination of

flowering plants and provision of nesting sites (Thorp

and Leong 1998). The elaborate floral displays of vernal

pools attract both generalist and specialist insect

pollinators. Bees of the family Andrenidae include

specialist species that typically only visit a narrow range

of flowering plants found in vernal pools (Thorp and

Leong 1998).

Currently, vernal pool area in the CVC varies from

;107 to 286 3 103 ha, depending on the boundary used

to define the CVC (Frayer et al. 1989, Engilis 1995,

Newbold 2002). In 1995, the USDA suggested that

entire vernal pool landscapes be considered for conser-

vation under the Farm Bill, including terrestrial mounds

between pools that generally did not meet wetland

criteria. By the year 2000, WRP enrollments included

1701 ha of vernal pool habitat. Upland and transitional

zones on WRP may benefit species adapted to brief

hydroperiods and dry periods. Crustaceans such as

tadpole shrimp (Lepidurus packardi ), vernal pool fairy

shrimp (Branchinecta lynchi ), conservancy fairy shrimp

(B. conservation), and longhorn fairy shrimp (B. longi-

antenna) are adapted to survive repeated drying and

inundation by producing dormant eggs (e.g., Ahl 1991).

Vernal pools vary greatly in size, and crustacean

diversity is positively correlated with their size and

depth (Ebert and Balko 1984, King et al. 1996).

Conservation practices such as cattle grazing and

burning may enhance aquatic invertebrate diversity by

eliminating noxious weeds. Selective foraging on exotic

annual grasses by cattle may help maintain a more open

canopy, resulting in a more diverse aquatic invertebrate

assemblage (Platenkamp 1998, Marty 2004). However,

intense physical manipulation (disking, chopping, chis-

eling, and rolling) may result in the loss of egg banks and

resting stages in vernal pools, lowering invertebrate

diversity.

Freshwater marsh wetlands, on the other hand, may

benefit from such practices, as studies on rice fields

show. Perturbation of rice straw enhances decompo-

sition after harvest and may stimulate plant diversity

and benefit small shorebirds. Aquatic invertebrates in

freshwater marshes exhibit mixed responses to these

practices, with abundance either increasing or decreas-

ing among different taxa due to complex interspecific

interactions (de Szalay et al. 1999). Responses may

also vary due to differences in plant recolonization.

Mowing was found to result in dense recolonization by

a single plant species (e.g., saltgrass), while disking

and burning resulted in more diverse plant communi-

ties.

Riparian wetlands provide habitat for 62 resident,

migrant, and nonmigrant wintering species of songbird

and at least 18 special-status vertebrates (Hunter et al.

1999, Humple and Geupel 2002). Nongame bird species

richness in refuges of the Sacramento subbasin peak in

the spring, and density of spring migrants is highest in

areas of extensive riparian woodlands adjacent to other

habitats (Gilmer et al. 1998). It is estimated that 98% of

the original 900 000 ha of riparian wetlands have been

lost, with much of the remaining riparian forests

fragmented in small patches surrounded by agricultural

fields (Hunter et al. 1999). There are currently 2311 ha of

WRP floodplain easements emphasizing stream corridor

stabilization and floodplain expansion.

Riparian forest stand age, spatial heterogeneity,

distance to remnant riparian forest, and plant diversity

all influence bird density and diversity (Gaines 1974,

Golet et al. 2003, Hickey et al. 2005). At sites

revegetated with native plants in the Sacramento River

that were greater than five years old, bird diversity

approached that of remnant woodland (Golet et al.

2003). In Iowa, VanRees-Siewert and Dinsmore (1996)

observed that the mean number of breeding birds was

significantly higher in older restored wetlands and that

species richness increased with percent cover of emer-

gent vegetation. Although most conservation actions

favor the preservation of mature riparian forest,

maintaining a mosaic of early, mid- and late-succession-

al habitat is critical for faunal diversity, as several bird

species were reported to be negatively associated with

mature riparian habitat characteristics such as high

canopy cover (Wood et al. 2006). Riparian wetlands

restored under WRP are typically ,10 years old,

(ranging from 0 to 12 years), thereby potentially

providing a variety of successional stages. A survey

conducted by Hickey et al. (2008) reported that restored

riparian sites in the San Joaquin subbasin exhibited

higher bird diversity than the Sacramento subbasin. The

condition and age of riparian buffers included in the

survey was unclear.

The quality of water sources for wetlands will

continue to pose a threat to wetland-dependent species

in the CVC. Wetlands established through WRP and

other wetlands offer the potential for reducing nutrient

loads that threaten wildlife, but will not remove salts in

agricultural drain water. In the San Joaquin Valley, salt

accumulation in the upper soils due to traditional
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irrigation practices in the arid environment resulted in

high selenium (Se) cycling and mobility (Wu 2004).

Agricultural return water from the San Joaquin Valley

has been implicated in multiple threats to water-

dependent birds, including: salt toxicosis and reduced

body condition (Gordus et al. 2002); contaminant

accumulation in diets, tissues, and eggs (Hothem and

Ohlendorf 1989, Saiki et al. 1993, Hothem and Welsh

1994); and reproductive impairment (Paveglio et al.

1992).

Future directions

Wetlands restored under WRP and other USDA-

funded programs have great potential to restore

ecosystem services to the highly modified landscape of

the CVC. Anecdotal evidence indicates that WRP has

enhanced biodiversity and flood storage, and has

contributed to ameliorating nitrogen loss in agricultural

landscapes. Increasing effectiveness of WRP will depend

on developing an understanding of how USDA conser-

vation practices affect delivery of these services.

However, documenting WRP’s contribution to these

conservation goals can only be determined through

effective monitoring and evaluation. With increasing

population growth, urbanization, and climate change,

water deficiencies are expected to increase. The effects of

shortages on water delivery to WRP wetlands and

management of WRP easements, particularly in the

drier southern CVC, are yet to be seen. As WRP

easements continue to grow in the CVC, continued

provision of the services described here hinges upon a

reliable water delivery system.
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