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Abstract

There is growing acknowledgment of the need to restore degraded environments. This paper studies
optimal investment in ecosystem restoration under environmental change. We develop an optimal control
model of the restoration decision to explicitly characterize the optimal extent and timing of restoration
given time-dependent marginal damages. We provide the first results on optimal dynamic investment in
ecosystem restoration, highlighting the important role that growth in restored patches plays in shaping
the time profile of investment. We then apply the model in a numerical simulation of coastal wetlands
restoration in Huntington Beach, California, that accounts for projected sea-level rise, uncertainty over
flooding severity, and the option to abandon damage properties. Our results show that early investments
in restoration are optimal in order build up a wetlands stock that can mitigate future flooding damages
exacerbated by sea-level rise. We find large option values associated with delaying irreversible decisions
to abandon damaged properties.
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“The next century will, I believe, be the era of restoration in ecology.” — E.O. |Wilson| (1999))

1 Introduction

Healthy ecosystems are the foundation for the flow of services that sustain life on Earth. Whereas early
conservation efforts focused on preserving unique environments, there is growing recognition of the need to
restore damaged and degraded ecosystems (Blignaut et al., [2014). Ecosystem restoration is the process of
assisting the recovery of environments that have been deleteriously altered by human activities. It can be
a passive or active endeavor. Passive restoration is when a degraded ecosystem is set aside and allowed to
recover on its own. Marine protected areas are one prominent example. Active restoration involves deliberate
human interventions, such as planting of native trees, grasses, and corals or rewetting of peatlands. It also
includes changes in management practices, such as crop rotations to restore agricultural soils and controls
on the timing and intensity of livestock grazing. Whether passive or active, the goal is to restore ecosystem
functionality and service ﬂowsE| To this end, there are currently initiatives throughout the world promoting
ecosystem restoration (Mirzabaev and Wuepper, [2023), including at the global scale the United Nations
Decade on Ecosystem Restorationﬂ

Economic studies of ecosystem restoration have emphasized estimation of the benefits and costs of restora-
tion, er ante frameworks for evaluating projects, and the design of policies to promote restoration efforts
(Mirzabaev and Wuepper], [2023). Missing from the literature is a complete analysis of optimal ecosystem
restoration. The manager faces a fundamentally dynamic problem, deciding when and how much restoration
to undertake in order to influence the evolving state of the ecosystem. In a world with environmental (e.g.,
climate) change, the system is often characterized by stochasticity and non-stationarity. For example, the
decision to restore coastal wetlands for flood protection must account for the growth over time in wetland
plants, the accumulation of sediments, and uncertain threats from sea-level rise. Although optimal ecosys-
tem restoration has been analyzed in static models (e.g., [Neeson et al. (2015))), to our knowledge, no studies
examine the dynamics of optimal restoration.

The central research question addressed in this study is: what should be the extent and timing of
ecosystem restoration under environmental change? High upfront costs and increasing marginal benefits of
restoration argue for delaying projects, but if a restored patch grows over time, and thus provides higher

benefits the earlier it is restored, near-term investment becomes more valuable. We develop an optimal

1Some authors make a distinction between ecosystem restoration and rehabilitation (e.g., |Arneth et al|(2021)), where the
former refers to actions that support ecological processes and the latter to actions that enhance ecosystem service flows. Our
analysis applies to restoration and rehabilitation activities and so the distinction is not important. As such, we follow Blignaut
et al.| (2014) and use the single term “restoration.”

Zhttps://www.decadeonrestoration.org/



control model to characterize optimal restoration decisions through time. The decision-maker chooses the
area of patches to restore in each period to maximize the flow of benefits from the ecosystem net of losses
from unrestored areas and restoration costs. In a standard natural resource model, the state variable (e.g.,
the biomass stock) is a function only of time. In our problem, we account for the age of each restored patch as
this determines the level of benefits it provides and the rate at which it grows. An age-class model is needed
to represent many types of ecosystem restoration. The accumulation of nutrients in degraded farmland soils,
the service flows from reforestation, and the re-establishment of native grassland plants depend on which
patches have been restored and patch-specific times since restorationﬂ In these examples, the change in the
state of the system depends on the evolution of individual restored patches, rather than an aggregate state
variable such as total restored area. In our model, the state variable is a function of time and age, and the
state equation is a partial differential equation. Adapting a model of vintage capital, discussed below, we
are able to obtain an analytical solution to the optimal restoration problem. In each period, the marginal
cost of restoration equals the shadow value of an age 0 restored patch, equal to the present value sum of
avoided damage over the lifetime of the patch, accounting for its growth over time and the evolving marginal
damages from environmental change.

Our theory of optimal ecosystem restoration is related to models developed in a number of previous
papers in environmental and natural resource economics. |Smith et al.| (2009) study the optimal restoration
of beaches with imported sand (i.e., beach nourishment). Beaches erode over time at an exogenous rate,
which is analogous to the growth of a restored patch in our model. However, nourishment is assumed to
always restore a beach to a fixed volume of sand, which means that only the timing of nourishment events, and
not the amount of nourishment, is chosen by the decision-maker. Thus, the problem is similar to finding the
optimal timber rotation with standing stock benefits (e.g., Hartman| (2018)). Our model has some common
features with models of optimal pollution clean-up (e.g., (Caputo and Wilen| (1995))). In [Lappi (2018)), the
decision-maker determines the optimal clean-up of polluted sites to minimizes damages plus costs, where
pollution decays at an exogenous rate. The assumption that benefits and costs are additive across sites,
each site is treated only once, and each site must be fully remediated means that only the timing of clean-up
at each site must be chosen. Our model is more general in that the decision-maker chooses the amount
of restoration, marginal benefits depend on the cumulative amount of restoration, and growth of restored
patches is age-dependent.

We draw inspiration from models of vintage capital (Benhabib and Rustichini, [1991; |Goetz et al.| |2008)).
In particular, [Feichtinger et al. (2006)) solve the complete dynamic optimization problem for a firm who

buys or sells machines of different ages to maximize discounted profits. The state variable in their model

3 Additional examples are found with the restoration of coral reefs, wetlands, and peatlands.



is K(t,a), the stock of capital in time ¢ of age a. The state equation is then given by the linear partial

differential equation:
0K (t,a) n 0K (t,a)
ot oa

= I(t,a) — 6(a)K (¢, a) (1)

where I(t,a) is the number of machines of age a bought or sold in ¢ and §(a) is the age-specific depreciation
rate. If capital is homogeneous, simplifies to the familiar expression for capital stock dynamics: K (t) =
I(t) — §K (t). [Feichtinger et al.| (2006) show that the model with state dynamics given by can be solved
with the addition of a boundary Hamiltonian, which represents the flow value of new (age 0) machines,
and application of the Method of Characteristics to convert the adjoint equation to an ordinary differential
equation. The authors obtain an explicit expression for optimal investment rate through timeﬁ We adapt
the [Feichtinger et al.| (2006) model to the problem of optimal ecosystem restoration, where our state equation
depends on time as well as the age of restored patches.

To further explore the insights from our theoretical analysis, we develop a numerical model applied
to coastal wetlands restoration. Coastal communities throughout the world are increasingly vulnerable to
flooding as the result of sea-level rise (Kulp and Strauss, |2019). Although hardened structures such as
seawalls have traditionally been used to manage these risks, there is increasing interest in the use of nature-
based solutions to reduce wave energy and storm surge (Sun and Carson) [2020; [Fairchild et al.l [2021)).
The dynamic simulation relaxes two assumptions in the optimal control model. First, we model damages
as stochastic rather than deterministic, allowing us to explore the implications of uncertainty for optimal
ecosystem restoration. Second, we consider the possibility that an area may be optimally abandoned when
the costs of restoration are too high relative to net benefits from the ecosystem. We model the abandonment
decision as irreversible, which when combined with uncertain damages, gives rise to option value — namely,
the decision to restore an area preserves the option to restore or abandon it in the future. In addition to
coastal wetlands restoration, option value is likely to arise in other settings where large shocks (e.g., severe
wildfire) makes recovery of the system extremely expensive (see, e.g., Syphard et al.| (2022).

We apply the numerical model to Huntington Beach, California. Like many parts of coastal California,
much of the Huntington Beach area was historically in wetlands (Stein et al., |2014; |Grossinger et al., [2011))
and is now vulnerable to sea-level rise. As shown in Figure[I] significant amounts of land currently in devel-
oped uses are projected to be under water by the end of the century under a 5-foot sea-level rise scenario.
Our simulation model accounts for the morphology of the coastal region, wave characteristics, sea-level rise
projections, and the value of assets at risk. Uncertainty in flooding damages arises from stochastic variation

in wave heights, which we measure using buoy data from the National Oceanic and Atmospheric Admin-

4Xepapadeas and de Zeeuw| (1999) analyze a model with a similar structure to understand how environmental regulation
affects the composition of a firm’s capital stock. However, they characterize only the steady-state optimality conditions.



istration (NOAA). Our numerical simulation solves for the optimal restoration of wetlands, which protect
developed areas from storm surges and sea-level rise. When developed areas are damaged by flooding, the
decision-maker must decide whether to repair properties or abandon them. We treat the abandon decision
as irreversible, which gives rise to an option value associated with maintenance of properties. Simulation
results highlight the important role that wetlands growth plays in shaping the dynamics of optimal restora-
tion. Even though flooding risks are relatively low in the near term, costly investments in restoration are
undertaken so that growth in wetlands will eventually protect properties from sea-level rise. The possibility
of abandoning damaged properties means that severe flooding events can actually reduce the value and op-
timal amount of restoration investments. For properties in our study region, option values associated with

delaying irreversible abandonment decisions are found to be worth a total of $1.6 billion.
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Figure 1: Huntington Beach, California, Under a Projected 5-foot Sea-level Rise

The next section presents an optimal control model of ecosystem restoration. In addition to deriving
an explicit solution, we provide numerical results to elucidate how the time path of the control variable

changes under different conditions. Section [3| presents the empirical application to wetlands restoration in



Huntington Beach, CA, under sea-level rise. Section [4] discusses the optimal solution and presents sensitivity

analyses and option value results. A final section provides discussion and conclusions.

2 The Resource Manager’s Problem

We model the decision problem for a resource manager who seeks to maximize the present value of net

benefits from ecosystem restoration under environmental changeﬂ The control problem is given by:

mag /0 .l /0 b(t) — p(t)(@ — a(t, a))da — Cly)]dt  s..

y(t)
Ox(t, o) n ox(t, o)
Oa ot

(2)
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The benefit flow in time ¢ from a fully restored ecosystem is given by b(¢t). This amount is reduced by
damages from unrestored areas, equal to the product of time-dependent marginal damages, p(t), and the
gap between the current state of the system, z(t,«), and a fully-restored system, Z. The state variable
in ¢, z(t,«), depends on the age « of the patch, where the inner integral in sums over ages 0 to tﬁ
Marginal damage changes over time to capture effects of environmental change, such as rising sea levels or
more favorable conditions for invasive species. In the outer integral, from time O to the end of the planning
horizon T, the cost of restoration C'(y(t)) is a convex function that increases with the amount of restoration
in ¢, y(t). The state equation is the rate of change in the restored stock of a given age, which is a function
solely of the growth in the existing stock, where f(«) is a concave function. We assume that the manager
in our model can invest in new restoration but cannot augment existing restored areasEI Thus, the amount
of restoration in time ¢, y(t), equals the stock of an age 0 restored patch in time ¢, z(¢,0). Finally, the
transversality condition requires that the shadow value of the stock in the final period T', A(T, @), is equal
to zero.

To solve the model, we need to specify current-value and boundary Hamiltonians. The current-value

Hamiltonian equals the flow of value from a restored patch of age « at time ¢:

H(z,y,A) = b(t) — p(t)(z — z(t, @) + Me, 1) f(@)z(e 1) 3)

5We assume that the resource manager has selected a particular restoration project for evaluation. A separate question is
whether to pursue this project, an alternative project, or any project at all. In Scction we discuss how our analysis is needed
to address this broader issue.

6Note that Z does not affect the solution to the optimization problem. As such, we are not bound by an assumption that
damages are completely eliminated when z(¢, &) = Z. In addition, we could solve the integral fot z(t, @))da and replace it with
X (t). However, as shown in Appendix[A.1] we can write the state equation as a function of X (¢) only for a special case of f(«)
and so we keep damages in the form in.

"This is in contrast to the [Feichtinger et al.| (2006) model (see their equation .




The boundary Hamiltonian captures the flow of value of an age 0 patch:

Ho = =C(y(t)) + A(t,0)y(t) (4)

The shadow value, A(t, ), is the present value of restoring a marginal amount of the ecosystem. Its depen-
dence on age is a generalization of standard models of natural resources in which the shadow value depends

only on time. The maximum conditions and adjoint equation for the model are given by:

oif
2y =0 (5)

T = 0= ~C'(y(t) + A(,0) (6)
2 I ) A () (7)

We use equations (6) and to solve for y(t), x(t,«), and A(¢,«). The Method of Characteristics is
used to transform the partial differential equation in into an ordinary differential equation (ODE). Once
in the form of an ODE, we can use an integrating equation and integration by parts to obtain an explicit

solution to the control problem in (2)):

At a) = /tT e~ Jitr=1latp=)dpy 6y (s (8)
C'(y(t)) = A(t,0) (9)
z(t, o) = z(t — o, 0)edo F(P)dr (10)

All derivations are found in see Appendix The shadow value in , the value of a marginal increase in
a patch of age « in time ¢, is equal to the present value sum of the damage prevented over the lifetime of the
restored patch, accounting for its growth over time and the evolving marginal damages from environmental
change. It then follows from the maximum condition in @ that restoration should continue to the point at
which the marginal cost of restoration equals the marginal benefit of establishing an age 0 patch (equation
@D. Lastly, the stock of a patch of age a at time ¢ is equal to the amount that was initially restored,
augmented with « years of growth at different growth rates given by f(«) (equation (10).

If we adopt specific functional forms, we can gain additional insights into the timing and magnitude of
optimal investment in restoration. We set our cost function to be a quadratic function over the amount

restored (see Appendix for details). Growth is an inverse function of the age of the restored patch and



damages are a logistic function of time. With these functional forms, we can derive the key result in equation
9
r N

2y(t) —1) = /O (s —t+ 1)e_r(5_t)mds (11)
where T', r, N, B, and A are parameters. With this result, we can adjust the parameters to gain insight into
the optimal choice of restoration under different conditions. We first establish a baseline level of restoration,
and then consider the implications of higher damages and damages that occur further into the future (Figure
. With the baseline parameters, restoration is highest in the early years and tapers off as the end of the
time horizon (7' = 100) approaches. Even though damages are low initially, a high level of initial investment
takes advantage of growth in the stocks over time. If damages are shifted to further in the future, then
restoration effort increases initially before declining. In the initial period, the discounted future damages are
lower than in the base case, causing a delay in optimal investment. The shift up in the level of restoration in
every period due to higher damages is intuitive as is the more rapid decline in investment since the manager
will inevitably make zero investment in the last period. Finally, a higher interest rate lowers the present
value of future damages in every period and, thus, encourages not only lower initial amounts of restoration,
but a flatter overall restoration schedule.

The analytical model in departs from standard natural resource models by allowing for age-dependent
growth. Thus, a natural question is how this generalization affects the optimal solution. We show in Appendix
that when growth is constant (i.e., f(a) = ), the state equation with age classes can be rewritten as
a function of aggregate restoration X (t) = fot z(t,)da, as in a standard model. In Figure |3, we compare
optimal investment in restoration under age-dependent growth to investment with constant growthﬂ In the
latter case, we fix f(a) = 1_%& at a range of values f(13), f(14), etc. The solution for the base case with
age-dependent growth in Figure[2|is reproduced and shown in red. Under the assumption of constant growth,
the optimal restoration path becomes convex. Compared to the base case, there is no incentive to restore
new patches to take advantage of the higher growth rates that occur at younger agesﬂ Thus, investment
occurs early and diminishes rapidly over time rather than being spread out over the entire time horizon.

When growth is slow (larger values of «), there is little investment in restoration.

8The same functional form assumptions and parameter values used to produce Figureare used here; see Appendix for
details.

9By assuming constant growth, f(a) = 0, our model has the key feature of a standard renewable resource model; i.e., an
aggregate state variable X (¢) that is not differentiated by age classes. However, in our model the assumption of constant growth
implies that the growth rate in the aggregate stock, X/X7 is constant, whereas in the standard model the growth rate in the
stock typically declines as X approaches the carrying capacity (see Appendix for details). We would expect a declining
growth rate to further reduce the incentive to establish new patches and flatten the curves shown in Figure .
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Figure 2: Analytical Solution with Imposed Functional Forms

3 Empirical Application

Approximately 10% of the world’s population live in low-elevation coastal zones susceptible to flooding

(Reimann et al. [2023). Coastal habitats provide a natural defense against flooding, while avoiding negative

environmental effects of hardened structures and providing a range of ecosystem services (Arkema et al.

2013). Coastal flooding often occurs during storms, when water from the ocean is pushed inland in a
phenomenon known as storm surge. Sea-level rise exacerbates flooding damages by increasing the inland

advance of storm surges. Coastal wetlands help to mitigate storm surge by reducing wave energy and run

up (Narayan et al., [2016). We develop an empirical simulation to maximize the present value of expected

net benefits from wetlands restoration in Huntington Beach, California. Like many other coastal regions in
the United States, this area once had extensive wetlands and tributaries that were filled in and developed
following Euro-American settlement. Thus, today the areas that were historically in wetlands tend to be

low-lying and vulnerable to the combined effects of sea-level rise and storm surge.
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Figure 3: Restoration Under Alternative Growth Assumptions

3.1 Empirical Model

Similar to the analytical model in section , the resource manager chooses the amount of wetlands
restoration in each period to maximize the present discounted value of coastal real estate net of restoration

costs. Define y, = {yo,y1, ..., yr—1} as the set of restored areas over time. At time ¢+ 1, the stock of restored

areas is:
t t—s
X =Y w [] @+ F(@) + Xo (12)
s=0 a=0

where f(«) is the growth in an age o patch of unit area and X represents the existing stock of wetlands at
time 0. The product term in is the discrete-time analog to the exponential term in .

There are 1 = 1, ..., N properties that generate rents r; in each year. Properties are subject to iid flooding
shocks z;; that cause damages D(z;, X;), where damages are decreasing in the aggregate stock of restored
wetlands: i.e., D; > 0,Ds < 0. The resource manager decides whether to abandon (d;; = 0) or maintain

(dit = 1) each property in each period. Define a;; as a state variable indicating whether property ¢ has been

10



abandoned (a;; = 0) or maintained (a;; = 1) as of the start of period ¢. a;; evolves according to:
i1 = Qiydg (13)

Note that once a property is abandoned, it remains in that state forever (i.e., abandonment is irreversible).

The timing of the model is as follows: 1) period ¢ begins with states X; and a;; given, 2) restoration y; is
chosen, 3) rents are collected for each property i if a;; = 1, 3) the shocks z;; happen, 4) decisions to abandon
or maintain each property 4, d;;, are made, and 5) period ¢ + 1 begins with new values of X;y1 and a;¢11
according to and . The decision to maintain property ¢ means that costs D(z;, X;) are incurred
(i.e., the damages are reversed). If abandoned, these costs are avoided. Thus, when maintained, the net rent
from property ¢ in ¢t is:

Tit = Qi [1i — dig D(2it, X¢)] (14)

If abandoned in t, the rent is m;; = au7r;.
Conditional on a restoration plan y, = {y:, Yt+1, .-, y7—1}, which determines the stock of restored area
over time, X; 1 = {X¢y1, Xito, ..., X7}, the solution to the abandon/maintain subproblem for property i is

given by Bellman’s equation:
V(X57 Ais, Zis) = H{}aXﬂ-is + 6EZV(XS+17 Ais+1, Zis-l—l) (15)

for s = t,t +1,....,T — 1, X; and a;; given, and subject to and . ¢ denotes the discount factor.

airE;[ri—D(zir,XT)]
1-0 .

In period T, each property yields the salvage value S(Xr,a;7) = If a property has
been maintained until T' (i.e., a;7 = 1), S(X7, a;7) equals the present discounted value of an infinite sum of
expected rents minus damages in period T'. In , V (X, ait, 2it) is the present discounted value of expected

net rents from property i given optimal abandon and maintain decisions. With this function, we can write

the optimal restoration problem in time 0 as:

N 71
HsllaXZ E.[V(Xo, ajo, zi0)] — Z 5'C(ye) (16)
0 t=0

i=1

subject to , a;p = 1 Vi, and Xy given, and where C(y;) is the cost of restoring an area of y;. The
expectation is needed for V(-) because y; is chosen before the z; are observed.

The solution to the problem in is y§ (a0, Xo) = {vs, v5, -, y5_1 } where ag = {a19, azo, ..., ano} and
X are the initial values of the state variables. In words, the solution is the optimal set of restored areas

from time 0 to T'— 1 given the initial states in ¢ = 0. Because the y; are chosen before the z;; occur, the

11



shocks are “integrated out” via the expectation in . Therefore, the solution is the optimal choice y§ and
a set of T — 1 values {y},y3,...,y%_;} that are optimal in expectation from the perspective of time 0. We
show in Appendix that this solution is equivalent to the solution obtained with backwards induction.
We refer to y{ as the optimal planned restoration since, with the exception of yg, it is what the manager
expects to do given the information available in time 0.

The resource manager implements y, which determines X; by . Before period 0 ends, the flooding
shocks zg = {z10, 220, -.., 2n0} occur. Now the manager makes optimal time 0 decisions to abandon or
maintain properties (d}, Vi) based on realizations of zy rather than in expectation. By , this results in
a new set of state variables a;. Thus, the manager enters period 1 with new “initial conditions” X; and ay,
which means the problem in must be resolved to find y7i (a1, X1) = {y7,v3, .., y5_1}, where yj is the
optimal restored area in time 1 and {y3,v3, ..., y5_,} are optimal in expectation. The manager implements

yi and the process continues until the end of the planning horizon at time 7'

3.2 Data and Set-up

To obtain a solution to the problem in , we define specific functions for flooding damages, net rents,
wetlands growth, and restoration costs. We have a sample of 7,509 properties located in Huntington Beach,
California. The mean house price, structure value, and monthly rent are $1.58 million, $449 thousand, and
$4536, respectively. The median (mean) elevation of the properties is 6.27m (10.17m). As shown in Figure
[[l many of these properties are at risk from projected sea-level rise and storm surge.

Flooding damages depend on flooding shocks z;; and the stock of restored wetlands X;. To specify
the shock distribution, we first measure wave run-up, or the maximum onshore elevation reached by waves
during storm surge, measured relative to the sea level (or still water level). [Erikson et al.| (2018) provide the
empirical formula relating deep-water wave conditions to wave run-up (R) for southern California near-shore
topography:

R=11 (0.35ﬁf(SWH ¥ Lo)O® + 0.5 [SWH * L(0.56382 + 0.004)]0-5) (17)

where B¢ is the beach slope, SWH is significant wave height, and Lg is deep-water wave length. By is
estimated as the median slope at the shoreline using a grid of points along the coast at Huntington Beach.
SW H and Ly are derived from NOAA buoy data (specifically Station 46222, located offshore from Huntington
Beach) for the period 2004 to 2024. SW H is the maximum daily wave height and Lg is obtained from the
formula Ly = ng /2m where g is acceleration due to gravity and T}, is the peak daily wave period. We

use to find the highest daily run-up in each year over the period 2004-2024 and define R as a random

12



variable drawn from this set of maximum run-up values with equal probabilitym The flooding shock is given
by:
zit = R+ sl — elv; (18)

where sl; is the still water level in year ¢ and elv; is the elevation of property i¢. Property ¢ experiences
flooding in year t if z;; > 0. We measure sl; using a quadratic function fit to the intermediate-high sea-level
rise prediction for Huntington Beach available from the NOAA Sea Level Rise ViewerE The elevation of
property @ is obtain from Redfin.

Flooding damages in year ¢ for property i are specified:

A
D(zi, X¢) = —_ strval;
1 _|_6_B[Zit_(Xt/X)R]+C

A
= 1+ eiB[R(lixt/X)+5lt*6lvi]+c Str’l}ali

(19)

A, B, and C are parameters obtained by a fitting a logistic function to depth-damage data in |Davis and
Skaggs (1992)@ The logistic function in measures the share of the structure value, strval;, destroyed
by the flood. Larger flooding shocks increase damages (note that —B < 0), whereas wetlands restoration
decreases damages via the term (X;/X )]? where X represents the stock of a fully-restored wetland. When
X, = X, the effect of storm surge is completely mitigated and damages only occur as the result of sea-level
rise. To measure the structure value, we start with the sale price of properties available from Redfin, which
include both the land and structure value. We then use data from Davis et al.| (2021) on census tract level
land values to back out the structure value of each property.

In specifying the damage function in , we make a simplifying assumption about wetlands restoration.
Damages are reduced by the aggregate stock of wetlands, X;, which are assumed to be placed along the
shoreline, but not to take up space currently occupied by houses. A more complicated analysis would
consider the trade-off between space for housing and wetlands. We abstract from these spatial complexities
to keep the focus on our main interest, the dynamic trade-offs inherent in ecosystem restoration.

We used Redfin data from the past two years of sales and web-scraped estimated rental values to measure
r;, the annual rental income from property ¢. It is important to use rents instead of home prices because
the latter may capitalize future effects of flooding. For a small share of the properties, rental values are
unavailable. In these cases, we predict annual rents using a simple hedonic model that specifies rents as a

function of house characteristics, distance from the coast, and local demographics (details and results are

10We draw only one shock each year and, thus, we assume that damages depend on the most severe annual floods that have
occurred historically.

' The fitted equation is sly = 0.182 4 0.00592¢ + 0.000158t% and the data is found at: https://coast.noaa.gov/slr/#.

12The estimated values are A = 0.369, B = 0.9497, and C = 2.803.
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found in Appendix . The wetlands growth function is specified f(a) = e~ 7, where 7 = 0.08 is chosen
based on age-dependent growth functions from the ecology literature (Paine et al., 2012)). Costs are given
by C(y:) = yy? where, for the base specification, v = 1. There is little data on restoration costs, especially
for large-scale restoration projects, and so we adopt a quadratic function for C(y;) that, consistent with the

analytical model, has the necessary convexity property. Finally, we set 6 = 0.97 and 7" = 100.

3.3 Solution method

To solve the problem in , we use gradient methods to search for the optimal restoration vector y,
that maximizes the expected value of assets net of costs. At each iteration of the search, we use backward
recursion to solve the stochastic dynamic programming (SDP) problem in conditional on the candidate
set of y, values. This nesting of the SDP subproblem within an outer search for y, mirrors the method
developed by Rust| (1987)) to estimate dynamic structural models.

We use backpropagation to compute gradients of the objective function with respect to y,. Backprop-
agation is a machine learning method commonly used in macroeconomics (Swanson and White| [1997)) and
non-parametric regression analysis (Cattaneo et al.| [2024). It systematically applies the chain rule to ef-
ficiently compute derivatives of the objective function. The gradients are then used to adaptively update
the choice variables, allowing for stable convergence even in the presence of uncertainty. The advantage of
backpropagation over other gradient approximation techniques is that it computes exact gradients efficiently
without numerical error. We use gradient methods in combination with dynamic programming due to the
computational costs of traditional approaches such as value or policy function iteration. The curse of di-
mensionality is particularly severe in our setting because a separate state variable is needed for the wetlands
volume in each age cohort when growth is nonlinear (see Appendix . Our approach circumvents this
problem by choosing the full set of y, values in the outer search, allowing us to calculate the aggregate stock

of restored areas in each period outside of the SDP algorithm using (12).

4 Numerical Simulation Results

We begin our discussion of results by showing the optimal planned restoration in period 0 — specifically,
the values of y, that solve . The red line in Figuredisplays the 100-year restoration plan with sea-level
rise included. Even though flooding events are becoming more severe over time, investments in restoration
decline. Although the finite time horizon plays some role here — namely, restoration in the final period goes
to zero because it provides no benefits beyond T" — less investment is needed later in the planning period

because of growth in the wetlands established earlier. These results underscore the important ways in which
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Figure 4: Optimal Wetland Restoration Under Baseline and Alternative Scenarios

non-stationary effects of climate change shape optimal restoration strategies. For comparison, the blue line
in the figure removes the effects of sea-level rise. Sea-level rise raises investments in restoration because it
magnifies the damages from storm surges, but it also encourages investment later in the planning horizon.
The flattening of the red curve in about year 40 corresponds to emerging flooding risks as sea levels rise.
Investments in restoration are maintained at a relatively high level in order to mitigate expected effects of
storm surges intensified by climate change.

Storm intensity has surprising effects on the dynamics of restoration investments. In Figure [4b we
present two scenarios in which the flooding shock distribution is restricted to the five highest and five lowest
realizations of R. For each scenario, we plot the difference in wetlands restoration relative to the baseline
scenario (the red curve in Figure . Although one might expect greater storm intensity to unambiguously
raise investment, this is only true early in the planning horizon. In the high flooding risk scenario, initial
restoration investment exceeds the baseline level up to about 15 years (see green curve). Early investment
ensures a large stock in the future as the result of wetlands growth, providing protection against more
extreme storm events. But once these early investments have been made, the marginal value of additional
restoration is lower. In addition, greater storm risks mean that more properties are optimally abandoned,
reducing the value of restoration. The low flooding risk scenario displays the opposite pattern (see orange
curve). Restoration investments are low initially due to the lack of an immediate threat. The manager opts
to defer restoration costs to the future, but ramps up investment as sea-level rise increases flooding risks
even from small storms. The total amount of restoration is similar under the two scenarios, but the timing
is markedly different.

Figure 4| presents optimal planned restoration, meaning that decisions after period 0, {y1,y2, ..., yr}, are
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Figure 5: Departure from Baseline Plan Following Realization of First Period Shock

optimal in expectation given information available at time 0. It is instructive to consider how these values
change as time progresses and new information becomes available. In Figure |bl we start the simulation in
period 1 and vary the magnitude of the period 0 run-up value Ry. In contrast to Figure [ the manager
now chooses the value of y; with knowledge of zy, X3, and a;. We plot the difference in the expected
wetlands stock over time, X, relative to the baselineE Differential effects of period 0 shocks on decisions
to abandon and maintain properties translate into asymmetric and persistent differences in the optimally
restored stock of wetlands. Larger flooding shocks at the end of period 0 result in more damaged properties
that are optimally abandoned. Therefore, investments made early in the planning horizon are smaller and
the stock of wetlands remains lower over the entire planning horizon. However, as sea level rises and the
remaining properties are exposed to flooding risk, wetland stocks are built up. Thus, for a mid-range of
period 0 shocks, there is little difference with the baseline by the end of the planning horizon. When period
0 shocks are small, properties sustain minimal damage in period 0 and it is optimal to maintain larger stocks
of wetlands. The time path of the wetlands stock is similar for a range of small shocks because there is little
difference among shocks in the period 0 property damage.

The analysis in Figure [p| can be extended to include realizations of the flooding shock over the entire

13Because the value of yg is chosen before Ry is revealed, X is the same for every realization of Ry and equal to the baseline
value.
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planning horizon. We conduct a Monte Carlo simulation in which we draw R values for all periods (i.e.,
{Ry, Ry, ..., Rr}). For each of 25 sets of R values, we compute the optimal restoration choices in each period.
In contrast to results presented above, these are the actual values of y; based on realizations of z; , rather
than the planned choices. In Appendix Figure [2 we plot for each set of R values the difference between the
actual values of y; and the planned values under the baseline scenario. There are large initial differences in
investments as large (small) flooding shocks decrease (increase) the benefits of early restoration. However,
by about year 60, we start to see convergence in the values of y; as the future stock of wetlands is increas-
ingly dependent on the growth of patches established earlier, and the marginal value of new investments
is diminished. At this point, there is less incentive to respond to flooding shocks and the investment time
paths “smooth out” as the end of the planning horizon approaches.

Sensitivity analysis is used to explore how optimal restoration varies with growth and cost parameters
(Figure @) For the growth function f(«) = e~ 7%, we raise and lower the value of 7 from its baseline value of
0.08. With faster growth (7 = 0.06), initial investment falls dramatically relative to the baseline, but exceeds
baseline investment in later years as the value of establishing new wetlands remains high even at the end of
the planning horizon. With slower growth (7 = 0.12), investment in restoration has much less value and is
lower than baseline investment in all but the first few years. For the cost function C(y;) = yy?, we raise and
lower the value of 7 from its baseline value of 1. When costs are high (v = 1.5), investment is shifted from
early in the planning horizon to later in order to diminish the contribution of costs to the present value of
net benefits. The opposite pattern is seen with low costs (v = 0.5).

A central motivation for the empirical application is to explore the effects of irreversibility and uncertainty
on optimal restoration. We assume that once the manager decides not to repair a property following a flood,
this abandonment decision cannot be reversed in the future. When combined with uncertainty over future
flooding shocks, there may be value in delaying the irreversible abandonment decision in order to preserve
the option to maintain or abandon a property in the future. For each property i, we compute the real
option value (Dixit and Pindyckl [1994) as the difference between the value of E,[V (X, a;0, zio] found using
Bellman’s equation in and the expected net present value of the property in period 0 (ENPV;) when
the abandon/maintain decision is made using an EN PV ruleE We find large option values associated with
maintaining properties facing flooding risk. The mean (median) option value is $221,832 ($182,470), which
is about 12% of the total value of properties in our sample. In aggregate, the option value is over $1.6 billion.

Appendix Figure [3| shows that restoration investments are higher under the Bellman rule than the EN PV

4 Specifically, in every period ¢ we compute the ENPV of maintaining the property from ¢ until the end of the planning
horizon. As long as the EN PV is positive, the property is maintained; otherwise it is abandoned. EN PV} is the discounted sum
of rents minus expected damages from period 0 until the property is abandoned according to the EN PV rule. The calculation
of E.[V(Xo, aio, zio] and ENPVy are made at the optimal values of y¢; i.e., y(ag, Xo), the solution to .
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Figure 6: Sensitivity of Results to Cost and Growth Assumptions

rule. The ENPV rule abandons properties too early, which mutes the incentive to invest in restoration.
When option values are accounted for in abandonment decisions, properties are more valuable and there is

greater incentive to protect them from flooding.

Table 1: Option Value of Maintaining Properties Subject to Flooding Risks

Value
Mean Option Value $221,832
Median Option Value $182,470
Percent of Total Property Value 11.94%
Total Value of Options $1,628,500,000

5 Discussion and Conclusions

Although preservation of unique environments is critical for the provision of ecosystem services, there
is growing recognition of the need to restore damaged and degraded ecosystems. Previous research has
addressed some of the economic dimensions of ecosystem restoration, but missing from the literature is a full
treatment of the dynamic tradeoffs. Dynamics are fundamental to the problem because of growth in restored

areas and environmental change. In this paper, we study the optimal timing and extent of investments in
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ecosystem restoration when damages from un-restored systems are non-stationary. Our analysis applies to
a wide range of restoration activities, including planting of native species in forest, grassland, and marine
environments, as well as changes in land management practices.

We begin by developing an optimal control model in which the manager chooses the amount of restoration
in each period to maximize the present value of net benefits from the ecosystem. The key features of
the model, which depart from traditional specifications in resource economics, are a state variable that
is time- and age-dependent and non-stationary damages. An age-dependent growth model is needed to
accurately characterize a large range of restoration activities. Although the resulting state equation is a
partial differential equation, we obtain an explicit solution to the model by using a boundary Hamiltonian
and the Method of Characteristics. An additional contribution of this study is to show how a broader class
of optimal resource models can be solved by leveraging insights from vintage capital models.

Our key analytical result is an expression for the shadow value of the state variable (¢, @). The value of
a marginal increase in an age « restored patch in time ¢ is the present value of the avoided damage over the
lifetime of the patch, accounting for its growth over time and evolving marginal damages. In each period
t, restoration should continue up until the marginal costs of restoration are equal to the shadow value.
Numerical simulations show that optimal investment occurs early in the planning horizon. Even though
damages are low initially, early investments are made to take advantage of growth in restored patches so
that future damages are mitigated. Only when damages are far in the future is it optimal to ramp up
investment over time. When growth rates are held constant, we remove the incentive to establish new
patches with higher growth. In contrast to a model with age-dependent growth, investment declines rapidly
rather than being maintained at a high level over time.

The formulation of the optimal control model assumes that the manager has selected a particular restora-
tion project. The solution to the control problem answers the question of how to implement it optimally.
A separate question is whether to pursue that particular project, an alternative project, or, indeed, any
project at all. Although we do not answer this question directly, we note that the control problem in
is a necessary ingredient to address it. Specifically, the objective function in , evaluated at the optimal
solution, gives the maximized present value of net benefits from the project under consideration. If the net
benefits are negative, then it is inadmissible according to cost-benefit criteria. If positive, then the project’s
net benefits can be compared to those generated by alternative projects.

To further explore the dynamics of optimal restoration, we apply the model to coastal wetlands restora-
tion. Coastal wetlands protect real estate from the combined effects of sea-level rise and storm surge, while
providing a range of ecosystem services and avoiding the environmental drawbacks of coastal hardening. In

our model, future storm surge is stochastic and damages are non-stationary due to sea-level rise. We allow
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for irreversible abandonment of properties, which when combined with uncertainty over damages gives rise
to potential option value. We expect option value to be important in settings where large shocks to an
ecosystem make it optimal to abandon restoration activities, at least in severely-affected areas. Examples
include marine heat waves that cause mass coral bleaching and establishment of invasive species that are ex-
tremely difficult to remove. In these cases, it may be optimal to continue restoration in order to preserve the
option to abandon or continue in the future. Although we treat abandonment of damaged coastal properties
as irreversible, future research could explore the conditions under which rebuilding in abandoned locations
is warranted [1%]

Consistent with the analytical model, we find that planned investment in coastal wetlands occurs early
in the planning period to take advantage of growth in restored patches. Sea-level rise magnifies this effect
by raising expected future damages. The time profile of planned investment is sensitive to the severity
of damages. When they are expected to be high, more investment occurs early to build up the stock of
wetlands. However, investment in new patches can eventually decrease as growth in the established stock
provides protection against severe storms. The opposite pattern is seen when damages are expected to
be low in the future. In this case, investments can be delayed, lowering the present value of restoration
costs. The size of the future stock is lower since growth is diminished, necessitating a higher level of future
investment than when storms are expected to be severe. In our study, we assumed a stationary storm surge
distribution based on historical data. If climate change increases the severity of future storms, one could
allow for a shifting distribution over time (Tebaldi et al.l 2012)), which would likely increase incentives for
early restoration investments.

As time unfolds and damages occur, adjustments are made in planned restoration investments. In
particular, when flooding damages are large early in the planning horizon, some properties are optimally
abandoned, which decreases the benefits of further investments. As a consequence, the stock of restored
wetlands is lower throughout the planning horizon. In our model, the current shock does not provide
information about future shocks. As such, high flooding damages today do not affect expectations about
damages in the future. An interesting extension of the analysis would be to allow expectations about future
storm surges to be updated based on the current realizations.

A key motivation for including uncertainty in the empirical application is to gauge the importance of
option value. In our setting, option value is the value to the manager of having the flexibility to delay
irreversible abandonment decisions. We find that option values are large. We estimate that the average
option value in Huntington Beach, CA, is approximately $200,000 per property, and more than $1.6 billion

in the aggregate. The broader implication of this finding is that the net benefits from restoration may be

15Chapter 7 in [Dixit and Pindyckl (1994) offers a starting point for this analysis.
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enhanced significantly if flexible decision making is allowed. Often, there are substantial time lags between
the proposal and implementation stages of restoration projects. For example, under the Collaborative Forest
Landscape Restoration Progranﬂ administered by the U.S. Forest Service, communities propose specific
forest restoration projects. This involves a lengthy application process in addition to potential delays due to
National Environmental Policy Act (NEPA) requirements. If the location, extent, and timing of restoration
can adapt to changing environmental and economic conditions, society will obtain greater value from the

resulting ecosystem service flows.
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A Appendices

A.1 The State Equation and Aggregate Restoration

In time ¢, the aggregate amount of restoration is given by X (t) = fot x(t,a)da. We show here that the
state equation can be rewritten as a function of aggregate restoration when f(a) is a constant; however,
we are unable to simplify the state equation in this way when f(«a) is a concave function. Taking the time

derivative of X (t), substituting the state equation in , and solving the second integral yields:

X(t) = x(t,t) —I—/O Wda
= z(t,t) +/0 [f(a)x(t, a) — %ﬁ]da

. (20)
= x(t,t) —l—/o fl)z(t, a)da — [z(t,t) — z(¢,0)]

= z(t,0) +/0 fla)z(t, a)da

x(t,0) is equal to new additions to the aggregate stock (e.g., from investments in restoration). Suppose f(«)

takes the form f(a) = 6, where 6 is a strictly positive parameter. In this case, becomes:

X(t) = x(t,0) + /Ot Ox(t, a)do (21)

= 2(t,0) + 0X ()

When f(a) depends on «, we are unable to simplify the integral in and write X (¢) in terms of X (t).
For example, applying integration by parts to does not yield a function of X (¢).
When there are no new additions to the stock, z(¢,0) = 0, and equation implies that the growth

rate in the aggregate stock is constant:

A standard specification for X in the renewable resource economics literature is:

X = F(X)

x(-3)

where 7 is the intrinsic growth rate and K is the carrying capacity. In this model, the growth rate in the

(23)

stock is given by:

%zrfr— (24)
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The growth rate reaches a maximum of r at X = 0 and declines to 0 at X = K.

A.2 Analytical Solution

A.2.1 Manager’s Problem

max/ e " [/ b(t) — p(t)(z — z(t,@))da — C(y(t))]dt  s.t.
0

y(t)
0x(t, a) n Ox(t, o)
ot Oa

(25)

0
=z(t,a)f(a) a€[0,t] z(¢,0)=yt) MT,a)=0

To be clear about definitions, « is the age or years since a patch was restored, ¢ is the years since the start

of our timeline, and ¢t — « is the birthday or year restored for a specific patch.

A.2.2 Hamiltonian and Solution

Current Value Hamiltonian

H(z,y,A) = b(t) — p(t)(T — z(t) + Ma, 1) f(a)z(a,t) (26)
Boundary Hamiltonian
Ho = —C(y(t)) + A0, )y () (27)

First-Order Conditions

OH
= 0 (28)
T = 0= =C'(y(t) + A(10) (29)

Adjoint Equation

N O\ OH

D2 == 2= (1) 4 A () (30)

A.2.3 Method of Characteristics

In this section, we present the method of characteristics and show how it applies to our problem. The
first step is to assume ¢ and « are functions of s, and find how the shadow price A changes with s. From the

chain rule, we have:
ONa,t) O a,t) . @ L O (a,t) . aﬁ
ds Ot Js da Js
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This expression matches the left-hand side of the adjoint equation in if % = % = 1. Thus,

oA

e (ORI )

Then, if we solve for ds in the three expressions and set them equal, we have:

15D
=00 = A — (@)
Rearranging yields:
PO (1) + At~ f(@)
ML) 51, 0)(r — f0)) = (1)

The second equation is an ODE that we can now solve. We start by multiplying through by (¢, a):

OA(t, @)
ot

,u(t, a) — A(t, O‘)(T - f(a))ﬂ(tv a) = —P(t)u(t7 a)

Then, setting the integrating equation to w = —(r — f(a))u(t,a) and substituting gives:

AN, )
ot

op(t, a)
ot

ut.a) + A(t, @) = —p(t, a)p(t)

Integrating both sides from t to T yields:
T
Msau(s)lf == [ u(s,alp(s)ds
¢

Before we can solve (32)), we have to solve for the integrating equation:

ou(t, a)

2 = fla)u)
i
()

T
tnlu(s.) =~ [ (= flatp - 0)dp

(s, a) = e~ S (r=f(atp=)dp
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Now, we solve the left-hand side of to obtain:

A(s, ) (s, )| = AT, a) (T, o) — A(t, @) u(t, @) = 0 — A(t, a)e di (r=F(atp=)dp

= At @)e= ST S ko=t

This result makes use of the boundary conditions A(T, ) = 0 and the integrating equation evaluated at t.

Substituting the integrating equation into the right-hand side of , we arrive finally at equation :

T T
Mt @) = el = Flatn=0)dp / o= ST r=Feto=t)do () g5 — / o= Ji (r=f{ectp=0) o )

t t

Since the discount rate is constant, we can alternatively write the shadow price as:

T
/\(t,a):/ e (s eSi Flatp=t)doy )4

t

Using the first-order condition for the boundary Hamiltonian, we can recover y(t) from:

T
Ol = [ eI S s

t

Finally, we derive an expression for z(¢, ) using the state equation:

Ox(t, o) n Ox(t, o)
ot Ow

= x(t, ) f(a)

We can once again apply the Method of Characteristics, which gives us:

— Ha— Ox(t, o)
O=00= o) (o)
ox(t,o)

19 o)

In(a(t,0)) — In(z(t — a,0)) = /Oa f(a)da

z(t,a) = z(t — a,0)elo f(@)da
This is equation . Alternatively, we can apply the initial condition z(¢,0) = y(¢) to obtain:

2(t, @) = y(t — a)els T2
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This result shows that the total amount of restoration of age « in time ¢ is the amount restored « years ago,

adjusted for growth over the subsequent « years.

A.3 Functional Forms to Illustrate the Analytical Solution

We adopt the following functional forms to produce Figures [2] and

N N
PO = e

Parameter values are:

Base: N=10 r=0.03 A=5 B=07 T =100
Far Damage: N =10 r=0.03 A=40 B=0.75 T =100
High Damage: N =15 r=0.03 A=5 B=0.75 T =100

High Interest Rate: N =10 r=0.05 A=5 B=0.75 T =100

A.4 Equivalence of Solution Method to Backwards Induction

We show that the solution to the problem in is equivalent to what is obtained with backwards
induction. We demonstrate this using a two-period model for one property. It is straightforward, though
notationally cumbersome, to extend the results to longer time horizons and multiple properties.

To help provide intuition for the solution, Figure shows a portion of the decision tree for the problem.
For ease of illustration, we assume in the figure, but not in the results derived below, that in each time
period ¢ = {0, 1} restoration is a binary decision y; = {ys1, 2}, the shock takes two values z; = {241, 22},
and, as in the original problem, maintain/abandon is a binary decision d; = {ds1,ds2}. Figure shows the
t = 1 decision tree conditional on choices y9; and dp; in period 0 and the shock zp;. The decision-maker
first chooses y1, the shock z; happens, and then the maintain/abandon decision d; is made. This results in
payoffs m; that are dependent on the full set of time 0 and 1 choices and shocks. To focus on the choices by
the decision-maker, we write the payoffs as a function of the full sequence of controls rather than the state

variables[[7]

1"We could equivalently write the payoffs in Figure as a function of state variables X and a rather than the period 0
choices and shock. Note that the payoff function m(-) captures both the net rents in (14) and the costs of restoration in (16).
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my (Yo1, Zo1, do1, Y11, 211, d11)

my (Yo1, Zov, o1 Y11, Z11, d12)

my (Yo1, Zow, Ao Y11 Z12, d11)

my (Yo, Zor, o1 Y11, Z12) d12)

my (Yo1, Zo1, do1 Y12, Z11, d11)

my (Yo, Zov, do1s Y12, Z11, d12)

my (Yo, Zow, o1 Y12» Z12: d11)

my (Yo, Zor, do1s Y12) Z12: d12)

Figure 1: A Portion of the Decision Tree for the Restoration and Maintain/Abandon Problem

To find the backwards induction solution, we start at the right of the decision tree and, from each node

(indicated by a dot), choose the value of d; that results in the highest payoff. In general, we solve:
Hbaxm1(y07 20, do, Y1, 21,d1) (33)
which yields the maximized payoff at any node as:

m1 (Yo, 20, do, Y1, 21,d7) (34)

where di maximizes m; for given values of v, 20,do,y1 and z;. Moving left in the decision tree, z; is a
random variable chosen by “nature” rather than the decision-maker. Thus, at the node preceding the shock
we have the expected payoff:

Ezlml(y07Z0ad07ylazl7dT) (35)

Because 2y and z; are independent, the expectation is not conditioned on zy. Finally, 41 is chosen to maximize
the expected payoff:

HL?XEnml(yOvZOadOvylazlvdT) (36)

which yields the maximized expected payoff for period 1:
E.,m1(yo, 20, do, Y1, 21,d7) (37)
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where y7 is the optimal value of y;.
The period 0 decisions and shock yield the payoff mq(yo, 0, do), which is added to the period 1 expected
payoff to obtain:

mo (Yo, 20, do) + E=,m1 (Yo, 20, do, y7, 21,d7) (38)

where the discount factor is set to 1. Following the same steps as for period 1, we obtain at the starting

node for period 0 the maximized expected value (EV*) for the problem:

EV* :Ezo [mo(y6k7 20, ds) + Ezlml (yga 20, dav yT7 21, d>1k)] (39)

:Ezom()(yga 205 d;) + Ezml(ySa 20, dév yTa 21 dT) (40)

where E, denotes the joint expectation for zg and z;.
We show, next, that we obtain the same EV™ using the solution method in . This method begins
by fixing yo and y; and then applying backwards induction to obtain dj. The initial steps are the same as

above, except that we do not apply the maximization in . Thus, the period 0 payoff in is:

mo(Yo, 20, do) + E.,m1 (Yo, 20, do, Y1, 21,d7) (41)

where y; is the pre-set, rather than the optimal value. When we arrive at the starting node for period 0 we

have:
EV =E. ,mo(yo, 20,dy) + E.m1(yo, 20, dy, Y1, 21, d7) (42)

Equation gives the maximized expected value conditional on yy and y;. The next step is to find the

optimal values of yg and y; by solving:
max EV =E., mo(yo, 20,d) + E.m1(yo, 20, dg, y1, 21,d7) (43)
The maximized objective function is:
EV* = E.;mo(yp, 20, do) + E=ma(yg, 20, dg, y1 5 21, dp) (44)
Equations and are equivalent and, thus, we have established that the method in yields the

same solution as backwards induction.
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A.5 Hedonic Rent Equation

Annual rental values for unavailable for approximately 19% of the properties in our sample. Rather
than omit these properties, we predict rents using a standard hedonic price model fitted to the observations
for which we have complete data. The dependent variable is log(rent), the natural log of estimated rent
values web-scraped from Redfin. For independent variables, we include structural characteristics such as the
number of bedrooms, number of bathrooms, square footage, and year built. These variables are taken from
Redfin and have minimal missing observations. We also include the distance to the coast to capture amenity
values associated with beach access. Finally, we control for area demographics, drawn from the 2020 Census
at the Census tract level. The Redfin data in our sample covers four Census tracts.

Estimation results are given in the table below. Although the purpose of the regression model is prediction
and not estimation of individual coefficients, we note that most of the estimates are significantly different from
zero and have the expected signs. An exception is the coefficient on distance to coast, which is imprecisely

estimated due to a lack of variation within the sample.

Estimates from Hedonic Regression Model

Variable Estimate Std. Error p-value
Intercept 13.1500 0.4225 < 2e-16 ***
Distance to Coast (m)  5.266e-07 1.797e-06 0.7695
Square Footage 0.0002367 7.675e-06 < 2e-16 ***
Beds 0.07840 0.004666 < 2e-16 ***
Baths 0.09403 0.007211 < 2e-16 ***
Year Built -0.002757 0.0002108 < 2e-16 ***
Median Age -0.01050 0.0004607 < 2e-16 ***
Percent Black -0.0003091 6.018e-05  2.88e-07 ***
Percent Asian -3.952e-05 1.028e-05 0.000122 ***
Median Income 1.689¢-06 9.953e-08 < 2e-16 ***
Average Education 7.836e-05 1.081e-05  4.64e-13 ***

Unemployment Rate -0.0003939 5.599e-05  2.17e-12 ***

Note: Residual standard error = 0.2712 on 7107 degrees of freedom; Multiple R = 0.7097; Adjusted R? =
0.7093; F-statistic = 1580 on 11 and 7107 DF; p-value < 2.2e-16. Significance codes: *** p < 0.001; **
p < 0.01; * p < 0.05.

A.6 Additional Numerical Simulation Figures
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Figure 2: Difference in Wetlands Restored Between Monte Carlo Simulated Values of R; and Baseline
Scenario
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Figure 3: Wetlands Restored When Abandon and Maintain Decisions are Made Using Bellman’s Equation
in (Baseline) and an ENPV Rule (see footnote
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