Grant Year: 1

Institution: University of California, Santa Cruz

CG Review Date: 2023-01-25

Approved Date:

Approved By:

Application ID: L22CR4529

Project Title: Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

Award Amount Modification:

Progress Details

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

Progress Report Abstract

This interdisciplinary project includes physical, biological, economic, and social science aspects as well as field and lab work and ecosystem and climate modeling and education and public outreach components. It integrates environmental justice considerations, policy, and governance approaches to develop a framework and guidelines for incorporating coastal wetland restoration and conservation into adaptation and development plans, facilitating the inclusion of coastal wetland restoration in carbon credit markets while considering multiple co-benefits.

We have established clear and effective communication strategies including an in-person kickoff meeting, quarterly work-package workshops, and monthly group meetings. We developed a project website and a students' discussion channel. Specific progress includes: (1) developing a list of desired parameters (air, water and soil) to be collected at the field sites and methods to do that; (2) collection physical and biological data and assessment of microbiome identity and activity; (3) creating a database of regional wetland restoration projects, analysis of this data, selection of case studies, and construction of a social network; (4) literature review to better understand how restoration projects work in practice and development of a toy model that controls flood risk; (5) modeling the effectiveness of different extents of wetlands for flood mitigation and looking at historical and proposed policy mechanisms around payments for ecosystem services; (6) conducted a geospatial analysis of wetlands distribution and social vulnerability across the state of California (7) summarizing the key model parameters most relevant to coastal wetland models; and (8) identifying websites with available authentic data to be used in our climate and data literacy course.

The main challenge we encountered is the inability to recruit graduate students dedicated to this project in the middle of the academic year and the exuberant process to recruit and hire the postdocs for the project. These challenges will be resolved with the start of the new academic year. In the next year we will continue the research towards achieving our ultimate goal to offer nature-based adaptation opportunities and enhance community resilience and environmental justice is key to safeguard livelihoods in the face of climate change.

Narrative Report of Progress

The objective of this project is to construct a set of recommendations that will enable wetland restoration projects to consider C sequestration and ecosystem services in their design/management. This is achieved by collaborative work done through four integrated work-packages (WP). (1) Carbon Dynamics in Wetland; (2) Carbon Economics and Ecosystem Services; (3) Policy, Governance and Justice; (4) Ecosystem and Climate Modeling; and (5) Education, Outreach and Climate Literacy. Below

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

we list report the progress made by each team and provide an outline of the team's next year's research plans.

Carbon Dynamics in Wetland - The goal of this WP is to collect data on C dynamics in wetlands. The data includes measurements of CO2 and CH4 emissions and a suite of meteorological data, collected by eddy covariance towers, soil and water chemistry and microbiology. The important environmental parameters linked to high net C burial will be identified and the data will inform process-based ecosystem models that will help determine favorable restoration conditions. We collected and processed greenhouse gas flux data in wetlands at the Delta, Eden Landing and Elkhorn Slough. Ancillary water and soil data are also continuously recorded. At the Delta we conducted a 24-hour water sampling campaign at Dutch Slough and conducted microclimate studies to examine the degree that adjacent wetlands are providing a cooling effect. At Edan Landing, we installed multi parameter water sensors as well as ADCPs to test best ways to quantify lateral C loss in tidal wetlands and found that about 45% of the C in the system is transported laterally. At Elkhorn Slough a soil and water sampling campaign at 3 wetland sites during the dry seasons was conducted. We collected 36 soil cores, extracted porewater and collected samples for dissolved gases in the soil. The >500 discrete water/soil samples are being analyzed for a multitude of variables. We have also installed a water sensor to measure water quality and dissolved inorganic C. The microbiology team (LLNL-LANL) has focused on establishing a baseline assessment of microbiome identity and activity at Elkhorn Slough and will use this as a model for the other sites. We are quantitatively comparing the identity of metabolically active vs. inactive microbes between a pristine and restored site. Cores from vegetated areas were collected and processed for deoxyribonucleic acid quantitative stable isotope probing by addition of H2180, which is assimilated solely into cells that are synthesizing DNA and thus metabolically active and growing.

Carbon Economics and Ecosystem Services - The economics team (UCSB, UCB, UCSC) is working on an economic model of wetlands restoration. We want to answer the broad questions: How, when, and where should investment in restoration be done to optimally mitigate flooding risks that are increasing under climate change? What additional ecosystem services can be generated by restoration projects designed to address flooding risk? During the first year of the project, the UCSB team has focused on conducting a literature review to better understand how restoration projects work in practice, with the goal of informing a model of restoration. We have also developed a toy model of a project that controls flood risk by choosing the optimal width of a vegetation band. The team has also devoted time to learn more about optimization algorithms in R that will ultimately be used for the analysis. In addition, the team has been looking at historical and proposed policy mechanisms around payments for ecosystem services. Data collection and analysis are underway for a forthcoming journal article that analyzes the literature on coastal wetland ecosystem service valuations as a case. The draft article places the

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

broader literature on ecosystem service valuations in conversation with questions of historical and environmental justice. Much of the conceptualization and analysis are complete, and we anticipate a finished draft by the end of the winter quarter 2023.

Policy, Governance and Justice - The Governance and Policy team (UCD, UCSC) developed a research design to examine governance and policy in California Bay Delta wetland restoration with a mixed methods approach using case studies, stakeholder interviews, a regional survey, and social network analysis. A database of regional wetland restoration projects was created from EcoAtlas. An interview tool was developed to collect original data to answer questions of procedural equity in the creation and implementation of wetland restoration projects. These interviews are currently undergoing internal review board evaluation. At UCI the group conducted a geospatial analysis of wetlands distribution and social vulnerability across the state of California. This distributive justice-focused investigation found that while wetlands areas have lower cumulative environmental impacts and social vulnerability, there are exceptions – including sites of industrial activities or recently de-industrialization – that do not follow this pattern. This analysis emphasizes the need and value of comprehensive environmental justice assessments for any wetlands site where restoration investments for carbon sequestration are being considered. The publicly available data sources used for this activity and several of the California-specific environmental justice literature referenced were catalogued. This analysis is complete and is being prepared for journal submission.

Ecosystem and Climate Modeling - The goal of the modeling team is to conduct sets of modeling experiments using ecosys and ATS and investigate how different coastal wetland restoration options and climate change will impact net carbon sequestration potential. We use observations to parametrize and benchmark the modes and predict greenhouse carbon exchanges, carbon burial, and plant dynamics. The team focused on hiring postdoc researchers, summarizing model parameters, communicating with the project group about data needs, and discussing methods on setting up model experiments in the study sites. Specifically, (1) we recruited two postdoc researchers who will work on the ecosys and ATS modeling. (2) we developed a list of key model parameters relevant to coastal wetland ecological, hydrological, and geochemical processes. (3) we analyzed the annual mean precipitation, temperature, and elevation across the observation sites and summarized the availability of climate data across the sites for site selection. We also identified other data needs such as soil properties, topography and plant traits that will be used to initialize the models.

Education & Outreach - In the first year of the project despite the challenge of recruiting students mid academic year we have included seven graduate students and five undergraduate interns and provided them with hands on experience in collaborative research. We have established an outward looking

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

project website which includes information about the project as well as resources like news items and videos. The publicly available data sources used for this activity and several of the California-specific environmental justice literature referenced were catalogued for inclusion in the climate and data literacy course. As from this project has been used in an NSF supported project (DIG CAMP) which provides high school students from underprivileged schools to Climate and Data literacy experience. The high school students as well as a group of climate-concerned community members visited our field site at Elkhorn Slough. We have also established collaborative relationships with the new UC–CSU ECCLPs Climate and Environmental Justice Literacy Initiatives a UC–CSU partnership that focuses on advancing PK-12 climate and environmental literacy, justice, and action to build NGSS aligned climate and data literacy curricula.

We have encountered some significant obstacles. Because of the mid-academic year start date, it was not possible to recruit new students dedicated to the project and some hired students had other funding sources. This resulted in slower progress on some project aspects, and not all GSR support was used. In addition, although we have started the process of hiring the postdocs in March, due to backlog in the HR office and the time it takes to process visas the selected postdocs are still not in the USA. We hope that the visas will be processed, and we are planning to recruit several new students for the project in the coming academic year. No aims have been discontinued and we are progressing as planned with a small delay in the modeling due to the delay in postdoc hires.

In the next year we will continue to collect and analyze the field data at all sites and expand on the microbiology work. The economics team will focus on developing a full model of the flood risk and producing preliminary results. The team will also include other ecosystem services beyond flood mitigation such as fishery/bird habitat, localized cooling for urban-adjacent areas, and improvements to water quality in the model. The cost of land acquisition/restoration depending on the restoration method will also be included. The policy team plans to use the survey at select other regions to allow comparisons with the Bay-Delta findings and networks and do more analyses focused on the environmental justice dimensions of wetlands restoration. A short policy report/set of recommendations exploring the implications of these findings for wetland restoration projects' siting, funding, and relation to social equity goals and two papers will be submitted for publication. The postdoc researchers will be on board, and the modeling team will focus on selecting an experiment site to conduct model simulations. We will start with a transect-scale simulation to understand the dynamics of C, surface and subsurface hydrology, and geochemistry with and without restored wetlands.

Key Personnel

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

Key Personnel

Last Na me	Firs t Na me	Email	De gre es	Title	Department	Inst ituti on	Role on Project	% Ef fo rt	Institut ion Type	Out of Stat e Effo rt?	No Longer on Project	Status	Upd ated
Payt an	Adi na	apayta n@uc sc.edu	Ph.D	Rese arch er	IMS	UC SC	Applic ant Princip al Investi gator		Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Arn old	Gwer	gbarn old@u cdavis .edu	Ph.D	Assis tant Prof.	Environmen tal Science & Policy	UCD	Co- Princip al Investi gator		Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Zilb erm an	Davic	zilber1 1@ber keley. edu	Ph.D	Prof.	Agricultural and Resource Economics	UCB	Co- Princip al Investi gator		Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Plati nga	And rew	plantin ga@br en.ucs b.edu	Ph.D	Prof.	Bren School of Environmen tal Science and Manageme nt	UC SB	Co- Princip al Investi gator		Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30

Mat thew	Rich ard	rmatth ew@u ci.edu	Ph.D	Prof.	Urban Planning and Public Policy, and Political Science	UCI	Co- Princip al Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Pett- Ridge	Jen nifer	pettrid ge2@ll nl.gov	Ph.D	Grou p Lead er	Environmen tal Isotope Systems	LLNL	Co- Princip al Investi gator	Govern ment			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Kro eger	Mar ie	mkroe ger@l anl.gov	Ph.D	SFA Co- lead	Terrestrial Microbial Carbon Cycling	LA NL	Co- Princip al Investi gator	Govern ment	- Sele ct One-	This person is no longer with the project.	Sub mitte d - Unlo cked	2023 -01-2 3 09:18
Mek onn en	Zela lem	Zmek onnen @lbl.g ov	Ph.D	Staff Scien tist	Climate and Carbon Sciences Program	LB NL	Co- Princip al Investi gator	Govern ment			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Bea ulieu	Cla udie	beauli eu@u csc.edu	Ph.D	Assis tant Prof.	Ocean Science	UC SC	Co- Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Zhu	Kai	kai.zh u@uc sc.edu	Ph.D	Assis tant Prof.	Environmen tal Studies	UC SC	Co- Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30

Ang elo	Hill ary	hangel o@uc sc.edu	Ph.D	Assis tant Prof.	Sociology	UC SC	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Seto	Kat heri ne	hangel o@uc sc.edu	Ph.D	Assis tant Prof.	Environmen tal Studies	UC SC	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Lub ell	Mark	mnlub ell@uc davis. edu	Ph.D	Prof.	Environmen tal Science & Policy	UCD	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Bald occ hi	Den nis	baldoc chi@b erkele y.edu	Ph.D	Prof.	Environmen tal Science & Policy	UCB	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Tag ue	Nao mi	ctague @bren .ucsb. edu	Ph.D	Prof.	Bren School of Environmen tal Science and Manageme nt	UC SB	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
May ali	Xavi er	mayali 1@llnl. gov	Ph.D	Depu ty Grou p Lead er	Environmen tal Isotope Systems	LLNI	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30

Stua rt	Rho na	stuart 25@ll nl.gov	Ph.D	Staff Scien tist	Systems and Synthetic Biology Group	LLNL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Ty Samo	Also	samo 1@llnl. gov	Ph.D	Staff Scien tist	Nuclear and Chemical Sciences Division	LLNL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Viss er	Ate	visser 3@llnl. gov	Ph.D	Staff Scien tist	lsotope Hydrology	LLNL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Kang	Qinj un	qkang @lanl. gov	Ph.D	Rese arch er	Earth and Environmen tal Sciences Division	LA NL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Mou Iton	John	moult on@la nl.gov	Ph.D	Rese arch Scien tist	Applied Mathematic s and Plasma Physics Group	LA NL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Torn	Mar gar et	mstor n@lbl. gov	Ph.D	co- head	Earth and Environmen tal Sciences Area	LB NL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30

Nico	Pet er	psnico @lbl.g ov	Ph.D	Staff Scien tist	Earth and Environmen tal Sciences Area	LB NL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Aria s Ortiz	Aria ne	aarias ortiz@ berkel ey.edu	Ph.D	Post Doc	Environmen tal Science, Policy and Manageme nt	UCB	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Rich ards on	Chri stin a	cmric har@u csc.edu	Ph.D	Post Doc	Earth and Planetary Science	UC SC	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Pit	Sus an	supit @ucsc .edu	M.S	Grad uate Sude nt	Earth and Planetary Science	UC SC	Trainee	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Pea rsall	Gra ce	gpear sal@u csc.edu	B.S	Grad uate Stud net	Earth and Planerary Science	UC SC	Trainee	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
McF arla ne	Karis	kjmcfa rlane @llnl.g ov	Ph. D.	Staff Scien tist	Atmospheri c, Earth, and Energy Division	LLNL	Co- Investi gator	Govern ment	Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Zim mer	Mar gar et	marga ret.zi mmer @ucsc .edu	Ph.D	Assis tant Prof.	Earth and Planetary Science	UC SC	Co- Investi gator	Acade mic/Re search Institut ion	Sub mitte d - Unlo cked	2023 -01-2 0 06:30

Arora	Bar avna	barora @lbl.g ov	Ph.D	Staff Scien tist	Earth and Environmen tal Sciences Area	LB NL	Co- Investi gator	Govern ment			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Lars en	Ashl ey	larsen @bren .ucsb. edu	Ph.D	Assis tant Prof.	Bern School of Environmen tal Science and Manageme nt	UC SB	Co- Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Garr ison	Jes sica	jdgarri s@uci. edu	Ph.D	Assis tant Prof.	Urban Planning and Public Policy, and Political Science	UCI	Co- Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Men dez	Mic hael	mame nde6 @uci.e du	Ph.D	Assis tant Prof.	Urban Planning and Public Policy, and Political Science	UCI	Co- Investi gator	Acade mic/Re search Institut ion	- Sele ct One-	This person is no longer with the project.	Sub mitte d - Unlo cked	2023 -01-2 3 09:18
Salti kov	Chad	saltiko v@ucs c.edu	Ph.D	Prof.	ΜΕΤΟΧ	UC SC	Co- Investi gator	Acade mic/Re search Institut ion			Sub mitte d - Unlo cked	2023 -01-2 0 06:30
Han son	Buck	bhans on@la nl.gov	PhD	Scien tist 2		LA NL	Co- Princip al Investi gator	Govern ment	- Sele ct One-		Sub mitte d - Unlo cked	2023 -01-2 5 04:30

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

Roy	Avis pa	avipsa r@uci. edu	PhD	Assis tant Prof.	Department of Urban Planning and Public Policy	UCI	Co- Investi gator	Acade mic/Re search Institut ion	- Sele ct One-	Sub mitte d - Unlo cked	2023 -01-2 5 04:30
-----	------------	-------------------------	-----	------------------------	--	-----	-------------------------	--	-------------------------	-------------------------------------	-----------------------------

Publications

List all Publications

Add

Public ation Type	Publication Title	ldent ifier	Authors	Public ation Year	Public ation Status	Status
Other	Performance of Restored Tidal and Nontidal Wetlands on the Exchange of Carbon	AGU Abstr act	Ariane Arias Ortiz, Robert Shortt, Tianxin Wang, Kaniska Mallick, Daphne J. Szutu, Joseph G Verfaillie and Dennis D Baldocchi	2022	Publis hed	Submit ted - Unlock ed

Patents and Licenses

List all Patents

Nothing to Report

Human Subjects Use

Assurance Status	IRB Approval Date	IRB Expiration Date	Assurance Number	Status
Exempt	2022-05-04	2025-04-14	1781342	Approved

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

Leveraged Funding

List all Leveraged Funding

Add

Achievement Type	Total Amount	Funding Organization	Year Received	Status
Leveraged Grant	\$406,100	NSF	2022	Submitted - Unlocked
Leveraged Grant	\$184,760	NSF	2021	Submitted - Unlocked

Signature

Principal Investigator Signature

I certify that the statements herein are true, complete and accurate to the best of my knowledge. I am aware that any false, fictitious, or fraudulent statements or claims may subject me to criminal, civil, or administrative penalties. I agree to accept responsibility for the scientific conduct of the project and to provide the required progress reports if a grant is awarded as a result of this application.

Applicant Electronic Signature (Type in your full legal name)

Adina Paytan

Date

01/25/2023

Annual Progress Report - L22CR4529 Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution

C&G Officer Signature

I certify that the statements herein are true, complete and accurate to the best of my knowledge. I am aware that any false, fictitious, or fraudulent statements or claims may subject me to criminal, civil, or administrative penalties. I agree to accept responsibility for the scientific conduct of the project and to provide the required progress reports if a grant is awarded as a result of this application.

C&G Officer Electronic Signature (Type in your full legal name)

Nick Theod	dosis	
Date		
01/25/202	3	
C&G Office	er Comments	
	Submitted By:	Betsy QuayleMaryAnn MorganNicholas TheodosisVicky Bender

Project webpage - https://wetlands.ucsc.edu/

Coastal Wetland Restoration

Coastal Wetland Restoration

A Nature-Based Decarbonization Multi-Benefit Climate Mitigation Solution

Webpage example for resources - https://www.youtube.com/watch?v=CR4Anc8Mkas&vl=en

Coastal Wetland Restoration

Measuring Wetland Carbon Dynamics with Eddies

Meeting 3: Dec. 20th

Ariane presents on her research understanding carbon fluxes within tidal and non-tidal restored wetlands in the San Francisco Bay-Delta

Recorded Group Zoom Webinars and Presentations

Social cost of carbon

• "The social cost of carbon (SC-CO2) for a given year is an estimate, in dollars, of the present discounted value of the future damage caused by a 1-metric ton increase in carbon dioxide (CO2) emissions into the atmosphere in that year, or equivalently, the benefits of reducing CO2 emissions by the same amount in that year. The SC-CO2 is intended to provide a comprehensive measure of the net damages - that is, the monetized value of the net impacts - from global climate change that result from an additional ton of CO2. These damages include, but are not limited to, changes in net agricultural productivity, energy use, human health, property damage from increased flood risk, as well as nonmarket damages, such as the services that natural ecosystems provide to society. " – California Air Resources Board, California's 2017 Climate Change Scoping Plan

TABLE 7: SC-CO₂, 2015-2030 (IN 2007 \$ PER METRIC TON)

Year	5 Percent Discount Rate	3 Percent Discount Rate	2.5 Percent Discount Rate
2015	\$11	\$36	\$56
2020	\$12	\$42	\$62
2025	\$14	\$46	\$68
2030	\$16	\$50	\$73

ow does ATS work with data? An example of Harb

Meeting 2: Nov. 15th

Members of the modeling team give the group an update on modeling approaches.

Meeting 1: Oct. 18th

In this first meeting each team gives an update on their status.

Eddy Covariance

Field and Lab Work – October 2022

Outreach – High school students and community groups visit the field site. Undergraduate summer interns

Digitized map of elevation of the wetland was produced to assess the change and volume of water as the water level rises and falls between tides. This helps us provide a constraint and independent measure of the volume flow we measure with the ACDP.

Coastal wetland sources, pathways, and mechanisms for DIC and DOC for lateral export. Variations in water table elevation relative to soil and rooting zone control the proportion of respired carbon that exits the system as vertical gaseous flux vs. lateral aquatic flux (adapted from Bogard et al., 2020 and Kroeger et al., 2022).

Areas with both high CalEnviroScreen cumulative impact score percentiles and high concentration of wetlands (% of surface area). Data source: OEHHA, 2021; USA Wetlands, 2022.

Finding: There are exceptions to this pattern. There are some areas of the state where wetlands coincide with significant environmental impacts and socially vulnerable communities. These include sites of ongoing industrial activities or recently de-industrialization.

- East Bay (industrial areas)
- Ports of LA/LB (pollution from port, containers, development, EJ activism)
- San Diego Bay (port-related diesel emissions)
- Salton Sea (agricultural runoff, asthma related impacts of drying lake, particularly among children)
- San Joaquin Valley
 - Kesterson National Wildlife Refuge (selenium)
 - Cantua Creek (water access and prices)
 - Tulare Lake Basin (water access and prices)

Garrison & Martinez, 2023

The new eddy covariance sites on the left and the list of all field sites in the AmeriFLux webpage on the right

Search Sites and Data Availability

Data Product All			• 0	Site Characteristics Veqetation (IGBP) Select 1 or more	^	Filters Applied 🖲 And O r 		
ta Variables 🜖 And 🔿 Or	^	Data Characteristics Data Use Policy Any Policy Years Any in Range to Record Length ≥ yrs		☐ Affiliated Network Select 1 or more ▼		Data Product: All	^	
GPP				MAT ≤ ♥ °C		No Data Variables Selected		
RECO						No Data Characteristics Selected		
C				Long s		Search: All Metadata 🗶		

Download Data Export Results Save as Site Set Save Filtered Search

Search Results: 66 sites

Data Availability Site Characteristics

Site Selector								Customize Columns 🕶			🌑 Map: None 🔻				
	Site ID 🖨	Name 🖨	Data Use Policy \$ (1)	AmeriFlux BASE Data ≑ €	AmeriFlux FLUXNET Data \$ ()	Lat 🗢	Long 🕈	Elev (m) \$	Veg ¢	Clim \$	MAT (°C) ≑	MAP (mm) ≑	AmeriFlux BASE Start ¢	AmeriFlux BASE End	^
~	US-Dmg	Dutch Slough Marsh Gilbert Tract	CC-BY-4.0			38.0015	-121.6691	1	WET	Csa	16.1	365			
/	US-EDN	Eden Landing Ecological Reserve	CC-BY-4.0	~	~	37.6156	-122.1140	null	WET	Csa			2018	2019	
/	US-EKH	Elkhorn Slough Hester Marsh	CC-BY-4.0			36.8094	-121.7523	0.5	WET	Csb	10	894			
/	US-EKP	Elkhorn Slough Porter Marsh	CC-BY-4.0			36.8558	-121.7488	0	WET	Csb	10	894			
/	US-EKY	Elkhorn Slough Yampah Marsh	CC-BY-4.0			36.8105	-121.7487	0	WET	Csb	10	894			
/	US-Hsm	Hill Slough Marsh	CC-BY-4.0	~		38.2368	-122.0212	1.113	WET	Csa	15.6	450	2021	2022	ł
/	US-Myb	Mayberry Wetland	CC-BY-4.0	~	~	38.0499	-121.7650	-4	WET	Csa	15.9	338	2010	2021	
/	US-Sne	Sherman Island Restored Wetland	CC-BY-4.0	~	~	38.0369	-121.7547	-5	GRA	Csa	16.09	311	2016	2020	
/	US-Srr	Suisun marsh - Rush Ranch	CC-BY-4.0	~		38.2006	-122.0264	8	WET	Csa	15.1	326	2014	2017	
/	US-Tw1	Twitchell Wetland West Pond	CC-BY-4.0	~	~	38.1074	-121.6469	-5	WET	Csa	15.5	421	2011	2020	
/	US-Tw4	Twitchell East End Wetland	CC-BY-4.0	~		38.1027	-121.6413	-5	WET	Csa	15.6	421	2013	2021	~
														>	11.

Office of

Science

Selected sites: 11 sites 🗹 Show only selected

Download Data Export Results Save as Site Set Save Filtered Search

